Publications by authors named "M A Cambon-Bonavita"

At deep-sea hydrothermal vents, deprived of light, most living communities are fueled by chemosynthetic microorganisms. These can form symbiotic associations with metazoan hosts, which are then called holobionts. Among these, two endemic co-occurring shrimp of the Mid-Atlantic Ridge (MAR), and are colonized by dense and diversified chemosynthetic symbiotic communities in their cephalothoracic cavity and their digestive system.

View Article and Find Full Text PDF

Most animal species have a singular developmental pathway and adult ecology, but developmental plasticity is well-known in some such as honeybees where castes display profoundly different morphology and ecology. An intriguing case is the Atlantic deep-sea hydrothermal vent shrimp pair Rimicaris hybisae and R. chacei that share dominant COI haplotypes and could represent very recently diverging lineages or even morphs of the same species.

View Article and Find Full Text PDF

Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.

View Article and Find Full Text PDF

Background: In deep-sea hydrothermal vent areas, deprived of light, most animals rely on chemosynthetic symbionts for their nutrition. These symbionts may be located on their cuticle, inside modified organs, or in specialized cells. Nonetheless, many of these animals have an open and functional digestive tract.

View Article and Find Full Text PDF
Article Synopsis
  • Glyphosate has been widely used for 40 years, but recent studies suggest it may have significant impacts on microbial communities and health in fish and potentially other species.
  • Chronic exposure to glyphosate was tested on rainbow trout to analyze its effects on their gut and gill bacteria using advanced genetic techniques.
  • Results indicated that glyphosate reduced bacterial diversity in the trout's gills, altered microbial composition, and weakened interactions among bacteria, highlighting potential risks for fish health in aquaculture settings.
View Article and Find Full Text PDF