Objective: The aim of the study was to examine the availability of clinical practice guidelines for malnutrition in hospitals over a period of 6 y and the subsequent use of nutritional interventions in malnourished patients.
Methods: This study was conducted as a secondary data analysis of data that were collected from 2012 to 2017 in a quantitative, cross-sectional, multicenter study called the National Prevalence Measurement Quality of Care (LPZ). Data from 15 hospitals and 5650 participating patients were analyzed.
BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 μM) and PPARδ (EC50 > 100 μM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation.
View Article and Find Full Text PDFPreviously disclosed C6 amido and benzimidazole dihydropyrazolopyrimidines were potent and selective blockers of IKur current. Syntheses and SAR for C6 triazolo and imidazo dihydropyrazolopyrimidines series are described. Trifluoromethylcyclohexyl N(1) triazole, compound 51, was identified as a potent and selective Kv1.
View Article and Find Full Text PDFPreviously disclosed dihydropyrazolopyrimidines are potent and selective blockers of I(Kur) current. A potential liability with this chemotype is the formation of a reactive metabolite which demonstrated covalent binding to protein in vitro. When substituted at the 2 or 3 position, this template yielded potent I(Kur) inhibitors, with selectivity over hERG which did not form reactive metabolites.
View Article and Find Full Text PDFAn 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta.
View Article and Find Full Text PDF