The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration.
View Article and Find Full Text PDFIntroduction: Within adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties.
Methods: Stroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor.
Wastewater-based epidemiology has allowed tracking the magnitude and distribution of SARS-CoV-2 in communities, allowing public health officials to prepare for impending outbreaks. While many factors influence recovery of SARS-CoV-2 from wastewater, proper extraction, concentration, and purification of RNA are key steps to ensure accurate detection of viral particles. The aim of this study was to compare the efficiency of four commonly used RNA extraction methods for detection of the SARS-CoV-2 RNA genome in sewage samples artificially inoculated with the virus, in order to identify a protocol that improves viral recovery.
View Article and Find Full Text PDFIn August 2018, symptoms of apical and basal rot resembling those caused by Sclerotinia sclerotiorum infection were observed in a commercial Brussels sprouts field in North Patagonia, Argentina. The incidence of apical and basal rot was 23.30% and 2.
View Article and Find Full Text PDFThe extracellular-matrix (ECM) is a complex interconnected three-dimensional network that provides structural support for the cells and tissues and defines organ architecture as key for their healthy functioning. However, the intimate mechanisms by which ECM acquire their three-dimensional architecture are still largely unknown. In this paper, we study this question by means of a simple three-dimensional individual based model of interacting fibres able to spontaneously crosslink or unlink to each other and align at the crosslinks.
View Article and Find Full Text PDF