Publications by authors named "M A Baranov"

In the present study, we demonstrated that the introduction of a 1,4-diethyl-1,2,3,4-tetrahydroquinoxalin moiety into the arylidene part of GFP chromophore-derived compounds results in the formation of environment-sensitive fluorogens. The rationally designed and synthesized compounds exhibit remarkable solvent- and pH-dependence in fluorescence intensity. The solvent-dependent variation in fluorescence quantum yield makes it possible to use some of the proposed compounds as polarity sensors suitable for selective endoplasmic reticulum fluorescent labeling in living cells.

View Article and Find Full Text PDF

Photochemical transformations of small molecules, such as -substituted benzaldehydes, in the absence of a photocatalyst are significantly underexplored and may reveal unexpected outcomes. In the present paper, we showed that 2-(2-formylphenoxy)acetic acid and its esters undergo photocyclization into chromanone and benzofuranone derivatives under 365 nm irradiation. The reaction occurs exclusively in dimethyl sulfoxide and can be used to efficiently obtain hydroxychromanones in good yields (27-91%).

View Article and Find Full Text PDF
Article Synopsis
  • Solvatochromic compounds are useful probes for biological research, specifically for tracking changes in protein structures.
  • The study utilized thiol-reactive solvatochromic analogs of the GFP chromophore to monitor two proteins: recoverin and the A adenosine receptor (AAR), finding that the best dye (DyeC) showed significant fluorescence changes related to protein activation.
  • The research highlights the potential of GFP-inspired dyes to effectively detect structural changes in G protein-coupled receptors (GPCRs), providing benefits like enhanced sensitivity to conformational changes and the ability to track fluorescence changes in response to different ligands.
View Article and Find Full Text PDF

In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties.

View Article and Find Full Text PDF

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag.

View Article and Find Full Text PDF