Publications by authors named "M A Abrahani"

In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown.

View Article and Find Full Text PDF

In streptozotocin (STZ)-induced diabetic rats, we previously showed an increased heparin-releasable (luminal) lipoprotein lipase (LPL) activity from perfused hearts. To study the effect of this enlarged LPL pool on triglyceride (TG)-rich lipoproteins, we examined the metabolism of very-low-density lipoprotein (VLDL) perfused through control and diabetic hearts. Diabetic rats had elevated TG levels compared with control.

View Article and Find Full Text PDF

Vascular endothelium-bound lipoprotein lipase (LPL) is rate limiting for free fatty acid (FFA) transport into tissues. In streptozotocin (STZ)-diabetic rats, we have previously demonstrated an increased heparin-releasable LPL activity from perfused hearts. Because heparin can traverse the endothelial barrier, conventional Langendorff retrograde perfusion of the heart with heparin could release LPL from both the capillary luminal and abluminal surfaces.

View Article and Find Full Text PDF

Vascular endothelial-bound lipoprotein lipase (LPL), also known as heparin-releasable LPL, catalyzes the breakdown of the triglyceride component of lipoproteins and is rate-limiting for free fatty acid transport to tissues. We previously demonstrated that heparin-releasable LPL activity increases in diabetic Wistar rat hearts, whereas with the development of hypertension in spontaneously hypertensive rats (SHR), there is a concomitant and progressive reduction in LPL activity. The objective of the present study was to examine the regulation of cardiac LPL activity in SHR-diabetic rats.

View Article and Find Full Text PDF