Automatic systems are increasingly being applied in the automotive industry to improve driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of this work is focused on improving the automatic brake assistance systems of motor vehicles trying to imitate human behaviour but correcting possible human errors such as distractions, lack of visibility or time reaction. The proposed system can optimise the intensity of the braking according to the available distance to carry out the manoeuvre and the vehicle speed to be as less aggressive as possible, thus giving priority to the comfort of the driver.
View Article and Find Full Text PDFTires are essential components of vehicles and are able to transmit traction and braking forces to the contact patch, contribute to directional stability, and also help to absorb shocks. If these components can provide information related to the tire-road interaction, vehicle safety can be increased. This research is focused on developing the tire as an active sensor capable to provide its functional parameters.
View Article and Find Full Text PDFThe possibility of using tires as active sensors opens the door to a huge number of different ways to accomplish this goal. In this case, based on a tire equipped with strain sensors, also known as an Intelligent Tire, relevant vehicle dynamics information can be provided. The purpose of this research is to improve the strain-based methodology for Intelligent Tires to estimate all tire forces, based only on deformations measured in the contact patch.
View Article and Find Full Text PDF