Publications by authors named "Mª Begona Gonzalez-Moro"

Plants grown under exclusive ammonium (NH) nutrition have high carbon (C) demand to sustain proper nitrogen (N) assimilation and energy required for plant growth, generally impaired when compared to nitrate (NO) nutrition. Thereby, the increment of the atmospheric carbon dioxide (CO) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. In this work, tomato (Solanum lycopersicum L.

View Article and Find Full Text PDF

Background: Sorghum (Sorghum bicolor L. Moench) is a cereal crop known for its biological nitrification inhibition (BNI) capacity, a plant-mediated activity limiting nitrification pathway. The use of BNI-producing plants represents an environmentally friendly and cost-effective approach to reduce nitrogen (N) losses, such as nitrate (NO ) leaching and nitrous oxide (NO) gas emissions.

View Article and Find Full Text PDF

Nitrogen (N) fertilization is essential to maximize crop production. However, around half of the applied N is lost to the environment, causing water and air pollution and contributing to climate change. Understanding the natural genetic and metabolic basis underlying plants N use efficiency is of great interest to attain an agriculture with less N demand and thus more sustainable.

View Article and Find Full Text PDF

Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in , a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices.

View Article and Find Full Text PDF

Ammonium (NH )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole.

View Article and Find Full Text PDF

Most plant species develop stress symptoms when exposed to high ammonium (NH4+) concentrations. The root is the first organ in contact with high NH4+ and therefore the first barrier to cope with ammonium stress. In this work, we focused on root adaptation to ammonium nutrition in the model plant Brachypodium distachyon.

View Article and Find Full Text PDF

Nitrate and ammonium are the main nitrogen sources in agricultural soils. In the last decade, ammonium (NH ), a double-sided metabolite, has attracted considerable attention by researchers. Its ubiquitous presence in plant metabolism and its metabolic energy economy for being assimilated contrast with its toxicity when present in high amounts in the external medium.

View Article and Find Full Text PDF

Nitrate (NO3-) and ammonium (NH4+) are the main inorganic nitrogen sources available to plants. However, exclusive ammonium nutrition may lead to stress characterized by growth inhibition, generally associated with a profound metabolic reprogramming. In this work, we investigated how metabolism adapts according to leaf position in the vertical axis of tomato (Solanum lycopersicum cv.

View Article and Find Full Text PDF

The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels.

View Article and Find Full Text PDF

Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.

View Article and Find Full Text PDF

While nitrogen (N) derived from ammonium would be energetically less expensive than nitrate-derived N, the use of ammonium-based fertilizer is limited by the potential for toxicity symptoms. Nevertheless, previous studies have shown that exposure to elevated CO favors ammonium assimilation in plants. However, little is known about the impact of different forms of N fertilizer on stomatal opening and their consequent effects on CO and HO diffusion in wheat plants exposed to ambient and elevated CO.

View Article and Find Full Text PDF

Plants mainly acquire N from the soil in the form of nitrate (NO ) or ammonium (NH ). Ammonium-based nutrition is gaining interest because it helps to avoid the environmental pollution associated with nitrate fertilization. However, in general, plants prefer NO and indeed, when growing only with NH they can encounter so-called ammonium stress.

View Article and Find Full Text PDF

Nitrogen is an essential element for plant nutrition. Nitrate and ammonium are the two major inorganic nitrogen forms available for plant growth. Plant preference for one or the other form depends on the interplay between plant genetic background and environmental variables.

View Article and Find Full Text PDF

This work explores whether the natural abundance of N isotopes technique could be used to understand the movement of N within the plant during vegetative and grain filling phases in wheat crop ( L.) under different fertilizer management strategies. We focus on the effect of splitting the same N dose through a third late amendment at flag leaf stage (GS37) under humid Mediterranean conditions, where high spring precipitations can guarantee the incorporation of the lately applied N to the soil-plant system in an efficient way.

View Article and Find Full Text PDF

An adequate carbon supply is fundamental for plants to thrive under ammonium stress. In this work, we studied the mechanisms involved in tomato (Solanum lycopersicum L.) response to ammonium toxicity when grown under ambient or elevated CO2 conditions (400 or 800 p.

View Article and Find Full Text PDF

Background: The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources.

View Article and Find Full Text PDF

Premise Of The Study: Abiotic constraints act as selection filters for plant invasion in stressful habitats. Adaptive phenotypic plasticity and transgenerational effects play a major role in colonization of heterogeneous habitats when the scale of environmental variation is smaller than that of gene flow. We investigated how plasticity and parental salinity conditions influence the performance of the invasive dioecious shrub Baccharis halimifolia, which replaces heterogeneous estuarine communities in Europe with monospecific and continuous stands.

View Article and Find Full Text PDF

Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood.

View Article and Find Full Text PDF

Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv.

View Article and Find Full Text PDF

Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH₄(+)), together with nitrate (NO₃(-)), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 (+) assimilation requires less energy than that of NO₃(-), many plants display toxicity symptoms when grown with NH₄(+) as the sole N source.

View Article and Find Full Text PDF

Plant ammonium tolerance has been associated with the capacity to accumulate large amounts of ammonium in the root vacuoles, to maintain carbohydrate synthesis and especially with the capacity of maintaining high levels of inorganic nitrogen assimilation in the roots. The tricarboxylic acid cycle (TCA) is considered a cornerstone in nitrogen metabolism, since it provides carbon skeletons for nitrogen assimilation. The hypothesis of this work was that the induction of anaplerotic routes of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (NAD-ME) would enhance tolerance to ammonium nutrition.

View Article and Find Full Text PDF

Ammonium is a paradoxical nutrient ion. Despite being a common intermediate in plant metabolism whose oxidation state eliminates the need for its reduction in the plant cell, as occurs with nitrate, it can also result in toxicity symptoms. Several authors have reported that carbon enrichment in the root zone enhances the synthesis of carbon skeletons and, accordingly, increases the capacity for ammonium assimilation.

View Article and Find Full Text PDF

Background: The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs.

View Article and Find Full Text PDF

The photorespiration cycle plays an important role in avoiding carbon drainage from the Calvin cycle and in protecting plants from photoinhibition. The role of photorespiration is frequently underestimated in C(4) plants, since these are characterized by low photorespiration rates. The aim of this work was to study the relationship between CO(2) assimilation, PS II photochemistry and the xanthophyll cycle when the photorespiratory cycle is disrupted in Zea mays L.

View Article and Find Full Text PDF