Publications by authors named "Lyznik L"

Background: Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells.

View Article and Find Full Text PDF

Background: Genome editing of monocot plants can be accomplished by using the components of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR associated Cas9) technology specifically optimized for these types of plants. Here, we present the development of RNA-guided Cas9 system for simplex and multiplex genome editing in barley.

Results: We developed a set of customizable RNA-guided Cas9 binary vectors and sgRNA modules for simplex and multiplex editing in barley.

View Article and Find Full Text PDF

The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified "nontransgenic" plants. In this work, we explore direct protein delivery to plant cells using mesoporous silica nanoparticles (MSNs) as carriers to deliver Cre recombinase protein into maize (Zea mays) cells.

View Article and Find Full Text PDF

Double-strand breaks are very potent inducers of DNA recombination. There is no recombination between DNA molecules unless one or two DNA strands are broken. It has become feasible to introduce double-strand breaks at specific chromosomal loci by using dedicated, redesigned endonucleases with altered DNA-binding specificities.

View Article and Find Full Text PDF

The liguleless locus (liguleless1) was chosen for demonstration of targeted mutagenesis in maize using an engineered endonuclease derived from the I-CreI homing endonuclease. A single-chain endonuclease, comprising a pair of I-CreI monomers fused into a single polypeptide, was designed to recognize a target sequence adjacent to the LIGULELESS1 (LG1) gene promoter. The endonuclease gene was delivered to maize cells by Agrobacterium-mediated transformation of immature embryos, and transgenic T(0) plants were screened for mutations introduced at the liguleless1 locus.

View Article and Find Full Text PDF

We have demonstrated that targeted mutagenesis can be accomplished in maize plants by excision, activation, and subsequent elimination of an endonuclease in the progeny of genetic crosses. The yeast FLP/FRT site-specific recombination system was used to excise and transiently activate the previously integrated yeast I-SceI homing endonuclease in maize zygotes and/or developing embryos. An artificial I-SceI recognition sequence integrated into genomic DNA was analyzed for mutations to indicate the I-SceI endonuclease activity.

View Article and Find Full Text PDF

As biotechnology advances, there is an increasing need to develop new technologies that may assist in more precise genetic engineering manipulations. Whether a placement of single genes in the proper chromosomal context, stacking a number of genes in the same chromosomal locus, rearrangement of existing chromosomal elements, or a global reconfiguration of the chromosomal structures is contemplated, the new genetic tools being developed provide technical capabilities to achieve goals that were only theoretical not long ago. We use examples of recent patent literature (issued patents and published patent applications) to illustrate trends in this fast advancing area of genetic technology.

View Article and Find Full Text PDF

The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants.

View Article and Find Full Text PDF

Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies.

View Article and Find Full Text PDF

DNA recombination reactions (site-specific and homologous) were monitored in the progeny of transgenic maize plants by bringing together two recombination substrates (docking sites and shuttle vectors) in the zygotes. In one combination of transgenic events, the recombination marker gene (yellow fluorescent protein gene, YFP) was activated in 1%-2% of the zygotes receiving both substrates. In other crosses, chimeric embryos and plants were identified, indicative of late recombination events taking place after the first mitotic division of the zygotes.

View Article and Find Full Text PDF

Three ASF/SF2-like alternative splicing genes from maize were identified, cloned, and analyzed. Each of these genes (zmSRp30, zmSRp31, and zmSRp32) contains two RNA binding domains, a signature sequence SWQDLKD, and a characteristic serine/ariginine-rich domain. There is a strong structural similarity to the human ASF/SF2 splicing factor and to the Arabidopsis atSRp34/p30 proteins.

View Article and Find Full Text PDF

T-DNA recombination and replication was analyzed in 'black mexican sweet' (BMS) cells transformed with T-DNAs containing the replication system from wheat dwarf virus (WDV). Upon recombination between the T-DNA ends, a promoterless marker gene (gusA) was activated. Activation of the recombination marker gene was delayed and increased exponentially over time, suggesting that recombination and amplification of the T-DNA occurred in maize cells.

View Article and Find Full Text PDF

Site-specific recombination has been developed into a genetic engineering tool for higher eukaryotes. The manipulation of newly introduced DNA is now possible in the course of genetic transformation procedures, thus making the process more predictable and reliable. Also, a wide variety of chromosomal rearrangements using site-specific recombination have been documented both in metazoan and plant species.

View Article and Find Full Text PDF

We have studied the feasibility in Arabidopsis of using a site-specific recombination system FLP/FRT, from the 2 microm plasmid of yeast, for making plant hybrids. Initially, Arabidopsis plants expressing the FLP site-specific recombinase were crossed with plants transformed with a vector containing kanamycin-resistance gene (npt) flanked by FRT sites, which also served to separate the CaMV35S promoter from a promoterless gusA. Hybrid progeny were tested for excision of the npt gene and the positioning of 35S promoter proximal to gusA.

View Article and Find Full Text PDF

Molecular evidence is provided for genomic recombinations in maize cells induced by the yeast FLP/FRT site-specific recombination system. The FLP protein recombined FRT sites previously integrated into the maize genome leading to excision of a selectable marker, the neo gene. NPTII activity was not observed after the successful recombination process; instead, the gusA gene was activated by the removal of the blocking DNA fragment.

View Article and Find Full Text PDF

The soybean heat-shock gene promoter (Gmhsp 17.5-E) has been used to direct expression of gusA and FLP genes in maize cells. At inducible temperatures, in transient expression assays, gusA gene expression controlled by the heat-shock promoter is about 10-fold higher than the expression directed by the CaMV 35S promoter.

View Article and Find Full Text PDF

We have demonstrated that a yeast FLP/FRT site-specific recombination system functions in maize and rice protoplasts. FLP recombinase activity was monitored by reactivation of beta-glucuronidase (GUS) expression from vectors containing the gusA gene inactivated by insertion of two FRTs (FLP recombination targets) and a 1.31 kb DNA fragment.

View Article and Find Full Text PDF

The requirements for homologous recombination between plasmid DNA molecules have been studied using the PEG (polyethylene glycol)-mediated transformation system of maize (Zea mays L.) protoplasts coupled with the transient expression assay for beta-glucuronidase (GUS). Two plasmids were introduced into maize protoplasts; one plasmid (pB x 26) contained a genomic clone of the Adh1 maize gene; the other plasmid (piGUS) was a promoterless construction containing part of intron A of the Adh1 gene fused to the gusA coding sequence.

View Article and Find Full Text PDF

A modification of the polyethylene glycol-mediated transformation procedure which eliminates the manual polyethylene glycol dilution step is presented. A transformation mixture of protoplasts, DNA and polyethylene glycol was plated directly onto agarose blocks after incubation. The procedure was simple and fast, thereby suitable for screening the gene activity of large numbers of plasmid constructions.

View Article and Find Full Text PDF

Three DNA regions required for high levels of transcription were identified by transient gene expression analysis of the 5' flanking region of a 19 kDa alpha-zein gene. For these analyses, the zein promoter region was fused to the beta-glucuronidase (GUS) gene and assayed by transient expression in carrot protoplasts. A 107-bp sequence (-114/-8) containing the TATA box resulted in low levels of GUS activity.

View Article and Find Full Text PDF

Protoplasts of the indica rice (Oryza sativa L.) variety, IR54, were transiently transformed with the gusA gene and stably transformed with both the neo and gusA genes. We show that PEG-mediated co-transformation of protoplasts with two genes on separate plasmids coupled with selection on kanamycin is an effective way of transferring foreign gene(s) into the indica rice genome.

View Article and Find Full Text PDF

An efficient co-transformation protocol using polyethylene glycol was developed for Zea mays L. (cv. A188 x BMS) protoplasts isolated from suspension culture cells.

View Article and Find Full Text PDF

The importance of cell culture conditions, including the use of feeder cells, on protoplast growth and transformation in maize (Zea mays L.) was investigated. Total GUS activity, measured two days after transformation, was five-fold higher in protoplasts cultured on feeder cells compared to those grown in the absence of feeder cells.

View Article and Find Full Text PDF