Background: Resistance to endocrine therapy is a major challenge of managing estrogen receptor positive (ER+) breast cancer. We previously reported frequent overexpression of FGFR4 in endocrine resistant cell lines and breast cancers that recurred and metastasized following endocrine therapy, suggesting FGFR4 as a potential driver of endocrine resistance. In this study, we investigated the role of FGFR4 in mediating endocrine resistance and explored the therapeutic potential of targeting FGFR4 in advanced breast cancer.
View Article and Find Full Text PDFUnlabelled: As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied over the past few decades. Sequencing technological advances have enabled genome-wide analysis of ER action. However, comparison of individual studies is limited by different experimental designs, and few meta-analyses are available.
View Article and Find Full Text PDFAs one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied in decade-long. Sequencing technological advances have enabled genome-wide analysis of ER action. However, reproducibility is limited by different experimental design.
View Article and Find Full Text PDFDetached Arabidopsis thaliana leaves can regenerate adventitious roots, providing a platform for studying de novo root regeneration (DNRR). However, the comprehensive transcriptional framework of DNRR remains elusive. Here, we provide a high-resolution landscape of transcriptome reprogramming from wound response to root organogenesis in DNRR and show key factors involved in DNRR.
View Article and Find Full Text PDFThe fibroblast growth factor receptor (FGFR) signaling pathway has long been known to cancer researchers because of its role in cell survival, proliferation, migration, and angiogenesis. Dysregulation of FGFR signaling is frequently reported in cancer studies, but most of these studies focus on FGFR1-3. However, there is growing evidence implicating an important and unique role of FGFR4 in oncogenesis, tumor progression, and resistance to anti-tumor therapy in multiple types of cancer.
View Article and Find Full Text PDF. Although most tissue is known to have a heterogeneous population of endothelial cells, transcriptional differences in organ specific endothelial cells have not been systematically analyzed at the single cell level. The Tabula Muris project profiled mouse single cells from 20 organs.
View Article and Find Full Text PDFWounding is the first event triggering regeneration. However, the molecular basis of wound signalling pathways in plant regeneration is largely unclear. We previously established a method to study de novo root regeneration (DNRR) in Arabidopsis thaliana, which provides a platform for analysing wounding.
View Article and Find Full Text PDFDe novo root regeneration (DNRR) has wide applications in agriculture such as those related to cutting technology. Detached Arabidopsis thaliana leaf explants can regenerate adventitious roots without added hormones. The regenerative ability is highly dependent on the developmental status of the leaf.
View Article and Find Full Text PDFWounding is the first event that occurs in plant regeneration. However, wound signaling in plant regeneration is barely understood. Using a simple system of de novo root organogenesis from Arabidopsis thaliana leaf explants, we analyzed the genes downstream of wound signaling.
View Article and Find Full Text PDFMany plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood.
View Article and Find Full Text PDFPlants have powerful regenerative abilities that allow them to recover from damage and survive in nature. De novo organogenesis is one type of plant regeneration in which adventitious roots and shoots are produced from wounded and detached organs. By studying de novo root organogenesis using leaf explants of Arabidopsis (Arabidopsis thaliana), we previously suggested that wounding is the first event that provides signals to trigger the whole regenerative process.
View Article and Find Full Text PDF