Industrial odor-derived environmental complaints pose an emerging and far-reaching challenge in cities worldwide with intensive industries. Developing effective odor complaint management strategies is essential for mitigating the public impact of industrial odors. Based on a typical case of persistent tire manufacturing odors affecting local communities, we proposed an environmental complaint risks (ECR) prediction model using machine-learning (ML) approaches, which combined complaints with temporal-resolution manufacturing-meteorology-environment data.
View Article and Find Full Text PDFFecal waste is a significant source of antimicrobial resistance (AMR) pollution and provides valuable insights into the AMR development in animal and human populations within the "One health" framework. Various genetic elements, including antibiotic resistance genes (ARGs), biocide and metal resistance genes (BMGs), mobile genetic elements (MGEs), and virulence factor genes (VFGs), are crucial AMR risk determinants (ARDs). However, few studies focused on compositional characteristics of ARDs in different feces.
View Article and Find Full Text PDFMaximizing the network of chemical symbiosis can enhance economic benefits and reduce life cycle environmental impacts, which are pivotal for achieving sustainability in the chemical industry. This study designs two innovative symbiosis algorithms, the Longest Path Algorithm and the Maximum Symbiosis Algorithm, specifically for chemical industrial clusters (CICs). The algorithms are applied to a prototypical CIC encompassing 569 distinct raw materials and yielding 435 unique products alongside 55 byproducts.
View Article and Find Full Text PDFAntibiotics are emerging pollutants that have detrimental effects on both target and non-target organisms in the environment. However, current methods for environmental risk assessment primarily focus on the risk to non-target organisms in ecosystems, overlooking a crucial risk of antibiotics - the induction of resistance in targeted bacteria. To address this oversight, we have incorporated resistance (R) risk with persistence, bioaccumulation and toxicity (PBT) to establish a more comprehensive PBTR (persistence, bioaccumulation, toxicity, and resistance) framework for antibiotic-specific risk assessment.
View Article and Find Full Text PDFUnveiling the nexus profile of the water-energy-carbon (WEC) and value flows embodied in regional trade is essential for enhancing the co-benefits between economic development and environment conservation. However, minimal research explores the WEC and value-added nexus efficiency of the Yellow Basin River (YRB) with a comprehensive framework. Thus, this study built a nexus framework based on a multiregional input-output model (MRIO) to analyze embodied WEC and value-added flows in the nine provinces of the YRB and all 31 provinces of China, primarily in 2017 compared to 2012 and 2015.
View Article and Find Full Text PDFIndustrial parks are emerging priorities for carbon mitigation. Here we analyze air quality, human health, and freshwater conservation co-benefits of decarbonizing the energy supply of 850 China's industrial parks. We examine a clean energy transition including early retirement of coal-fired facilities and subsequent replacement with grid electricity and onsite energy alternatives (municipal solid waste-to-energy, rooftop photovoltaic, and distributed wind power).
View Article and Find Full Text PDFWastewater treatment plants (WWTPs) have been regarded as an important source of antibiotic resistance genes (ARGs) in environment, but out of municipal domestic WWTPs, few evidences show how environment is affected by industrial WWTPs. Here we chose Hangzhou Bay (HZB), China as our study area, where land-based municipal and industrial WWTPs discharged their effluent into the bay for decades. We adopted high-throughput metagenomic sequencing to examine the antibiotic resistome of the WWTP effluent and coastal sediment samples.
View Article and Find Full Text PDFCoastal water quality in China has been impacted by direct discharge of industrial wastewater, and various kinds of AOX pollutants have been detected in the seawater and sediment. As the dominant pollution source of Hangzhou Bay, a typical fine chemical industry park "HSEDA" was selected as the study area in this research. The AOX in both wastewater and sludge phases from 22 large-scaled enterprises were simultaneously investigated.
View Article and Find Full Text PDFMethane emissions from worldwide increasing abandoned coal mines have posed multiple challenges of global warming, energy waste, and explosion risk. This study first profiles the dynamic patterns of coal mine methane emissions in different recovery technologies, methane extraction with drainage (MEWD, mine-water concurrently extracted and treated) and direct methane extraction (DME, noncontrol on mine-water), in two abandoned mines from Ningxia and Inner Mongolia as China's leading coal provinces. Then, we conducted a techno-economic analysis and life-cycle assessment to quantify their comprehensive benefits.
View Article and Find Full Text PDFMicroplastics have become global emerging issue and received widespread attention in recent years. Due to their chemical persistence, plastic particles can be broken into smaller items but accumulated for long time in the environment like sediment. However, limited by current detection technologies, the distribution and characteristics of small-sized microplastics in coastal sediment remain uncertain.
View Article and Find Full Text PDFIn order to obtain in-depth insight of the behavioral fate and ecological risks of antibiotics in coastal environment, this study investigated the distribution, partitioning and primary influencing factors of antibiotics in water and sediment in the East China Sea. After quantification of 77 target antibiotics in 6 categories, ten antibiotics were detected simultaneously with a detection frequency >50.0% in water and sediment; the concentrations of these ten antibiotics were 0.
View Article and Find Full Text PDF2,4,6-Trichlorophenol (2,4,6-TCP) is extensively consumed in industrial production and may cause environmental damages. The effect of halide ions on the decomposition of 2,4,6-TCP has often been overlooked. In this study, the bromide ion was found to have a stronger negative impact on 2,4,6-TCP degradation than chloride ion in the O system, and led to the formation of adsorbable organic halogens (AOX).
View Article and Find Full Text PDFTextile manufacturing poses pressing challenges on water sustainability characterized by intensive chemical consumption and waterborne pollution. Industrial clustering is a hallmark of textile industry development, featuring a two-stage wastewater treatment system consisting of in-plant and centralized treatment facilities. Driven by increasingly stringent wastewater discharge limits, three pillar stakeholders in textile industrial clusters, the local government, enterprises and environmental utility operators, seek for systematic countermeasures by balancing contradictory interests.
View Article and Find Full Text PDFFine chemical industry, characterized of small scale, large heterogeneity, and high added value, is the most technology-intensive and dynamic sub-sector in chemical industry, but also has much high environmental factor in production. This study aims to explore green development pathways of about 60 fine chemicals manufacturers in a typical fine chemical industrial park with an annual output of 15 billion USD in China. We analyzed eco-efficiency and cost-benefits of emissions reduction of the park during 2011-2019 from multiple perspectives, by integrating decoupling index, data envelopment analysis, and linear econometric model.
View Article and Find Full Text PDFThe occurrence of man-made antibiotics in natural environment has aroused attentions from both scientists and publics. However, few studies tracked antibiotics from their production site to the end of disposal environment. Taking the coastal region of Hangzhou Bay as the study area, the fate of 77 antibiotics from 6 categories in two-step wastewater treatment plants (WTPs, i.
View Article and Find Full Text PDFAntibiotics have raised significant concern as emerging pollutants for their increasing consumption, persistent input, and potential threat to ecological environment. Due to low concentrations and various types in coastal water, simultaneous quantification of all kinds of antibiotics is time-consuming and costly. In order to make antibiotic regular monitoring in coastal water possible, identifying the priority antibiotics in the environment is essential.
View Article and Find Full Text PDFIndustrial parks are flourishing globally and are mostly equipped with a shareable energy infrastructure, which has a long service lifetime and thus locks in greenhouse gas (GHG) emissions. We conducted a two-phase study to decarbonize Chinese industrial parks by targeting energy infrastructure. Firstly, a high-resolution geodatabase of energy infrastructure in 1604 industrial parks was established.
View Article and Find Full Text PDFThe distribution of 14 ARGs, intI1, and 16S rDNA were analysed in 4 wastewater treatment plants (WWTPs), 2 effluent receiving areas (ERAs), and Hangzhou Bay (HZB). The results showed that each integrated WWTP (IWWTP) received higher abundance of ARGs than pharmaceutical WWTPs (PWWTPs), and IWWTPs removed ARGs more efficiently than PWWTPs. The WWTP effluents greatly contributed to the ARGs pollution in the water environments of the ERAs and HZB, and the total abundance of the ARGs displayed a distance decay pattern.
View Article and Find Full Text PDFThe distribution of 77 antibiotics in the coastal water and sediment from 3 bays of the East China Sea was investigated. There were 43 and 25 antibiotics detected with total concentrations of 30.8-2106.
View Article and Find Full Text PDF