Publications by authors named "Lyudmyla Antypenko"

(), the second most prevalent Candida pathogen globally, has emerged as a major clinical threat due to its ability to develop high-level azole resistance. In this study, two new 5,6-dihydrotetrazolo[1,5-]quinazoline derivatives ( and ) were synthesized and characterized using IR, LC-MS, H, and C NMR spectra. Along with 13 previously reported analogues, these compounds underwent in vitro antifungal testing against clinical isolates using a serial dilution method (0.

View Article and Find Full Text PDF

Antimicrobial resistance is a never-ending challenge, which should be considered seriously, especially when using unprescribed "over-the-counter" drugs. The synthesis and investigation of novel biologically active substances is among the directions to overcome this problem. Hence, 18 novel 5,6-dihydrotetrazolo[1,5-c]quinazolines were synthesized, their identity, purity, and structure were elucidated by elemental analysis, IR, LC-MS, Н, and C NMR spectra.

View Article and Find Full Text PDF

Introduction: Agricultural chemicals are impacting health nowadays. Recently, promising synergistic antifungal interaction between tacrolimus and some azole compounds was studied.

Objective: To determine ADME parameters, potential side effects of test substances to reduce time and resources in the future.

View Article and Find Full Text PDF

Agents with antifungal activity play a vital role as therapeutics in health care, as do fungicides in agriculture. Effectiveness, toxicological profile, and eco-friendliness are among the properties used to select suitable substances. Furthermore, a steady supply of new agents with different modes of action is required to counter the well-known potential of human and phyto-pathogenic fungi to develop resistance against established antifungals.

View Article and Find Full Text PDF
Article Synopsis
  • Tacrolimus (FK506) is an immunosuppressant mainly used to prevent organ rejection in transplant patients but also shows antifungal properties.
  • The study demonstrates tacrolimus's strong ability to inhibit the growth of 11 fungi and 3 agricultural oomycetes, indicating potential use in crop protection.
  • Molecular docking studies identified a key antifungal enzyme, MurD, as a primary target for tacrolimus, highlighting its significance in developing new agricultural fungicides.
View Article and Find Full Text PDF

Due to their high specificity and efficacy, triazoles have become versatile antifungals to treat fungal infections in human healthcare and to control phytopathogenic fungi in agriculture. However, azole resistance is an emerging problem affecting human health as well as food security. Here we describe the synthesis of 10 novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines.

View Article and Find Full Text PDF

Nine novel acyl thioureas were synthesized. Their identities and purities were confirmed by LC-MS spectra; each structure was elucidated by elemental analysis, IR, Н and C NMR spectra. Applying an in vitro screening of their antifungal potential, three substances (3, 5, and 6) could be selected as showing high activity against 11 fungi and 3 Phytophthora strains of phytopathogenic significance.

View Article and Find Full Text PDF

Antifungal activity of suberic acid monomethyl ester (monomethyl suberate) was investigated in a growth inhibition assay comprising of 11 different fungi and 3 Phytophthora oomycetes strains relevant in agriculture. In comparison to standard antifungal hymexazol, monomethyl suberate showed moderate antifungal effects at a concentration range of 100-300 µg/mL. Alternaria alternata, Fusarium equiseti, Fusarium fujikuroi and Phytophtora infestans GL-1 were the most sensitive fungi showing inhibition rates up to 100 %.

View Article and Find Full Text PDF

The increasing mortality due to antibacterial resistance necessitates the search for novel antimicrobial agents. Hence, series of 1-R-2-([1,2,4]triazolo[1,5-c]quinazoline-2-ylthio)etanon(ol)s were synthesized, evaluated by spectral data and studied against St. aureus, M.

View Article and Find Full Text PDF

The increasing mortality due to antibacterial resistance necessitates the search for novel antimicrobial agents. Hence, series of 1-R-2-([1,2,4]triazolo[1,5-c]quinazoline-2-ylthio)etanon(ol)s were synthesized, evaluated by spectral data and studied against St. aureus, M.

View Article and Find Full Text PDF

In the continuing search for novel, biologically effective heterocyclic agents, several methods for the synthesis of 2-heteroaryl-[1,2,4]triazolo[1,5-c]quinazoline-5(6 H)-thiones have been developed: thiolation of oxo derivatives, [5+1] cyclocondensation of [2-(3-heteroaryl-[1,2,4]triazol-5-yl)phenyl]amines with carbon disulfide, potassium ethyl xanthogenate, or aryl isothiocyanates, and in situ reaction of 2-isothiocyanatobenzonitrile with hydrazides. A series of N-R-2-[(2-heteroaryl-[1,2,4]triazole-[1,5-c]quinazoline-5-yl)thio]acetamides were obtained by aminolysis of the corresponding acetic acids and alkylation of potassium thiolates with N-R-2-chloroacetamides. It was established that some potassium thiolates, 4 a-4 d, 4 h, and 4 i, had high antibacterial activity against Staphylococcus aureus with a minimum inhibitory concentration of 12.

View Article and Find Full Text PDF

In this study, a series of novel 2-alkyl(aryl)-quinazolin-4(3H)-thiones, 2-R-(quinazolin-4(3H)-ylthio)carboxylic acids and amides were synthesized and evaluated for antimicrobial and anticancer activities. Their structure was confirmed by elemental analysis and spectral data (FT-IR, LC-MS, (1)H-NMR). Antimicrobial activity was tested in vitro against Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Candida albicans and NCI in vitro preliminary anticancer activity against nine different cancer types.

View Article and Find Full Text PDF

The combinatorial library of novel potential anticancer agents, namely, 2-(alkyl-, alkaryl-, aryl-, hetaryl-)[1,2,4]triazolo[1,5-c]quinazolines, was synthesized by the heterocyclization of the alkyl-, alkaryl-, aryl-, hetarylcarboxylic acid (3H-quinazoline-4-ylidene)hydrazides by oxidative heterocyclization of the 4-(arylidenehydrazino)quinazolines using bromine, and by the heterocyclization of N-(2-cyanophenyl)formimidic acid ethyl ester. The optimal method for synthesis of the s-triazolo[1,5-c]quinazolines appeared to be cyclocondensation of the corresponding carboxylic acid (3H-quinazoline-4-ylidene)hydrazides. The compounds' structures were established by (1)H, (13)C NMR, LC- and EI-MS analysis.

View Article and Find Full Text PDF

The novel heterocyclization of 5-(2-aminophenyl)-1H-tetrazole with potassium ethylxanthogenate or carbon disulfide was proposed. The potassium salt of the tetrazolo[1,5-c]quinazoline-5-thione was subsequently modified by alkylation with proper halogen derivatives to (tetrazolo[1,5-c]quinazolin-5-ylthio)alkyls, N,N-dialkylethylamines, 1-aryl-2-ethanones, 1-(alkyl)aryl-2-ethanols, carboxylic acids, and esters. The structures of all newly synthesized compounds were confirmed by FT-IR, UV-vis, LC-MS, (1)H, (13)C NMR, and elemental analysis data.

View Article and Find Full Text PDF

The series of novel N-R-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]acetamides with thiazole and thiadiazole fragments in a molecule were obtained by alkylation of potassium salts 1.1-1.4 by N-hetaryl-2-chloroacetamides and by aminolysis of activated acids 2.

View Article and Find Full Text PDF

Several novel 6-thio-3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-based compounds containing an ω-(dialkylamino(heterocyclyl)]alkyl fragment were synthesized to examine their anticancer activity. Some of the 6-{[ω-(hetero-cyclyl)alkyl]thio}-3-R-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones (3.1-3.

View Article and Find Full Text PDF