Publications by authors named "Lyudmila Kh Pastushkova"

Comprehensive studies of the effects of prolonged exposure to space conditions and the overload experienced during landing on physiological and biochemical changes in the human body are extremely important in the context of planning long-distance space flights, which can be associated with constant overloads and various risk factors for significant physiological changes. Exhaled breath condensate (EBC) can be considered as a valuable subject for monitoring physiological changes and is more suitable for long-term storage than traditional monitoring subjects such as blood and urine. Herein, the EBC proteome changes due to the effects of spaceflight factors are analyzed.

View Article and Find Full Text PDF

Spaceflight is one of the most extreme conditions encountered by humans: Individuals are exposed to radiation, microgravity, hypodynamia, and will experience isolation. A better understanding of the molecular processes induced by these factors may allow us to develop personalized countermeasures to minimize risks to astronauts. Areas covered: This review is a summary of literature searches from PubMed, NASA, Roskosmos and the authors' research experiences and opinions.

View Article and Find Full Text PDF

Urinary proteins serve as indicators of various conditions in human normal physiology and disease pathology. Using mass spectrometry proteome analysis, the permanent constituent of the urine was examined in the Mars-500 experiment (520 days isolation of healthy volunteers in a terrestrial complex with an autonomous life support system). Seven permanent proteins with predominant distribution in the liver and blood plasma as well as extracellular localization were identified.

View Article and Find Full Text PDF

The urine protein composition samples of ten Russian cosmonauts (male, aged of 35 up to 51) performed long flight missions and varied from 169 up to 199 days on the International Space Station (ISS) were analyzed. As a control group, urine samples of six back-up cosmonauts were analyzed. We used proteomic techniques to obtain data and contemporary bioinformatics approaches to perform the analysis.

View Article and Find Full Text PDF

Background: The recent evolution of genomics and subsequently proteomics offers a major advance in the ability to understand individual human variation in disease and the molecular level changes induced by certain environmental exposures. This original study examines urinary proteome composition to enable the understanding of molecular homeostatic mechanisms in spaceflight and presents the potential for early detection of subclinical disease, microgravity risk mitigation strategies, and countermeasure development for exploration-class missions.

Methods: The urinary proteome composition of six Russian cosmonauts (men, ages 35-51) who flew long-duration missions of 169-199 d was determined 30 d before flight and compared to repeat studies 1 and 7 d postflight.

View Article and Find Full Text PDF