Publications by authors named "Lyudmila Ena"

Objective: This research aims to evaluate the impact of eligibility criteria on recruitment and observable clinical outcomes of COVID-19 clinical trials using electronic health record (EHR) data.

Materials And Methods: On June 18, 2020, we identified frequently used eligibility criteria from all the interventional COVID-19 trials in ClinicalTrials.gov (n = 288), including age, pregnancy, oxygen saturation, alanine/aspartate aminotransferase, platelets, and estimated glomerular filtration rate.

View Article and Find Full Text PDF

Background: Manually curating standardized phenotypic concepts such as Human Phenotype Ontology (HPO) terms from narrative text in electronic health records (EHRs) is time consuming and error prone. Natural language processing (NLP) techniques can facilitate automated phenotype extraction and thus improve the efficiency of curating clinical phenotypes from clinical texts. While individual NLP systems can perform well for a single cohort, an ensemble-based method might shed light on increasing the portability of NLP pipelines across different cohorts.

View Article and Find Full Text PDF

Integration of detailed phenotype information with genetic data is well established to facilitate accurate diagnosis of hereditary disorders. As a rich source of phenotype information, electronic health records (EHRs) promise to empower diagnostic variant interpretation. However, how to accurately and efficiently extract phenotypes from heterogeneous EHR narratives remains a challenge.

View Article and Find Full Text PDF