Publications by authors named "Lyubov Y Filatova"

Adhesive-invasive has been suggested to be associated with the development of Crohn's disease (CD). It is assumed that they can provoke the onset of the inflammatory process as a result of the invasion of intestinal epithelial cells and then, due to survival inside macrophages and dendritic cells, stimulate chronic inflammation. In previous reports, we have shown that passage of the CD isolate ZvL2 on minimal medium M9 supplemented with sodium propionate (PA) as a carbon source stimulates and inhibits the adherent-invasive properties and the ability to survive in macrophages.

View Article and Find Full Text PDF

Co-precipitation of biopolymers into calcium carbonate crystals changes their physicochemical and biological properties. This work studies hybrid microcrystals of vaterite obtained in the presence of natural polysaccharides, as carriers for the delivery of proteins and enzymes. Hybrid microcrystals with dextran sulfate, chondroitin sulfate, heparin, fucoidan, and pectin were obtained and compared.

View Article and Find Full Text PDF

The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility.

View Article and Find Full Text PDF

Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles.

View Article and Find Full Text PDF

A stimuli-responsive (pH- and thermoresponsive) micelle-forming diblock copolymer, poly(1,2-butadiene)--poly(,-dimethylaminoethyl methacrylate) (PB--PDMAEMA), was used as a polymer template for the in situ synthesis of silver nanoparticles (AgNPs) through Ag complexation with PDMAEMA blocks, followed by the reduction of the bound Ag with sodium borohydride. A successful synthesis of the AgNPs on a PB--PDMAEMA micellar template was confirmed by means of UV-Vis spectroscopy and transmission electron microscopy, wherein the shape and size of the AgNPs were determined. A phase transition of the polymer matrix in the AgNPs/PB--PDMAEMA metallopolymer hybrids, which results from a collapse and aggregation of PDMAEMA blocks, was manifested by changes in the transmittance of their aqueous solutions as a function of temperature.

View Article and Find Full Text PDF

While the enteral delivery of proteolytic enzymes is widely established for combating many diseases as an alternative to antibiotic treatment, their local delivery only emerges as administration route enabling sustained release in a controlled manner on site. The latest requires the development of drug delivery systems suitable for encapsulation and preservation of enzymatic proteolytic activity. This study proposes hybrid microspheres made of mucin and biodegradable porous crystals of calcium carbonate (CC) as the carriers for chymotrypsin (CTR) delivery.

View Article and Find Full Text PDF

Porous vaterite CaCO crystals are widely used as containers for drug loading and as sacrificial templates to assemble polymer-based nano- and micro-particles at mild conditions. Special attention is paid nowadays to mucosal delivery where the glycoprotein mucin plays a crucial role as a main component of a mucous. In this work mucoadhesive properties of vaterite crystals have been tested by investigation of mucin binding to the crystals as a function of (i) time, (ii) glycoprotein concentration, (iii) adsorption conditions and (iv) degree of mucin desialization.

View Article and Find Full Text PDF

Porous vaterite crystals of CaCO₃ are extensively used for the fabrication of self-assembled polymer-based microparticles (capsules, beads, etc.) utilized for drug delivery and controlled release. The nature of the polymer used plays a crucial role and discovery of new perspective biopolymers is essential to assemble microparticles with desired characteristics, such as biocompatibility, drug loading efficiency/capacity, release rate, and stability.

View Article and Find Full Text PDF

A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested.

View Article and Find Full Text PDF

Phage lytic enzymes are promising antimicrobial agents. Lysins of phages phi11 (LysPhi11) and phi80α (LysPhi80α) can lyse (destroy) cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible.

View Article and Find Full Text PDF

Staphylococcus aureus causes many serious visceral, skin, and respiratory diseases. About 90% of its clinical strains are multi-drug resistant, but the use of bacteriophage lytic enzymes offers a viable alternative to antibiotic therapy. LysK, the phage K endolysin, can lyse S.

View Article and Find Full Text PDF

LysK, the enzyme lysing cells of Staphylococcus aureus, can be considered as perspective antimicrobial agent. Knowledge of LysK properties and behavior would allow optimizing conditions of its storage as well as formulating strategy towards its stabilization. Reaction of LysK with substrate (suspension of autoclaved Staphylococcus aureus cells) has been found to be adequately described by the two-stage Michaelis-Menten kinetic scheme.

View Article and Find Full Text PDF