Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface.
View Article and Find Full Text PDFOne of the key stages in the development of mRNA vaccines is their delivery. Along with liposome, other materials are being developed for mRNA delivery that can ensure both the safety and effectiveness of the vaccine, and also facilitate its storage and transportation. In this study, we investigated the polyglucin:spermidine conjugate as a carrier of an mRNA-RBD vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFHere we examined the mechanism of propagation of variation potential (VP) induced by burning in wheat leaves. Participation of hydraulic and chemical mechanisms in VP transmission was analyzed by optical coherent tomography and a radioactive tracer method, respectively. The speed of the hydraulic signal considerably exceeded the VP velocity.
View Article and Find Full Text PDFElectrical signals (action and variation potentials) caused by environmental stimuli induce a number of physiological responses in plants including changes in photosynthesis; however, mechanisms of these changes remain unclear. We investigated the influence of the variation potential on photosynthesis in geranium (Pelargonium zonale) under different conditions (control, low external CO₂ concentration, and actinic light absence). The variation potential caused by lamina burning induced a reduction in photosynthesis (decreases in effective quantum yields of photosystem I and II, CO₂ assimilation rate, and stomatal conductance) in unstimulated leaves under control conditions.
View Article and Find Full Text PDFAction potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out.
View Article and Find Full Text PDF