Publications by authors named "Lyubomir G Nashev"

Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from a common ancestral corticoid receptor. The basis for specificities of human MR for aldosterone and human GR for glucocorticoids, such as cortisol, bearing 17α-hydroxyl-groups, is incompletely understood. Differences in MR at S843 and L848 and GR at the corresponding P637 and Q642 have been proposed as important in their different responses to glucocorticoids with 17α-hydroxyl-groups.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenases (11β-HSD) control the intracellular concentrations of glucocorticoids: 11β-HSD1 converts the inactive cortisone to the active cortisol, and 11β-HSD2 is responsible for the opposite reaction. Inhibition of 11β-HSD1 is beneficial in the treatment of metabolic syndrome, whereas 11β-HSD2 inhibition leads to hypertension. Therefore, 11β-HSD1 inhibitors should be selective over 11β-HSD2.

View Article and Find Full Text PDF

17 β -Hydroxysteroid dehydrogenase type 1 (17 β -HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17 β -HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers.

View Article and Find Full Text PDF

Background: Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR).

View Article and Find Full Text PDF

Recent studies proposed a functional coupling between 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3)-dependent testosterone formation and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1)-mediated interconversion of glucocorticoids through competition for the luminal pyridine nucleotide pool. To test this hypothesis, we used human embryonic kidney-293 cells transfected with 17β-HSD3 and/or 11β-HSD1, in the absence or presence of hexose-6-phosphate dehydrogenase that generates reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the endoplasmic reticulum and determined enzyme activities. As an endogenous cell model, mouse MA-10 Leydig cells were used.

View Article and Find Full Text PDF

Background: Impaired corticosteroid action caused by genetic and environmental influence, including exposure to hazardous xenobiotics, contributes to the development and progression of metabolic diseases, cardiovascular complications and immune disorders. Novel strategies are thus needed for identifying xenobiotics that interfere with corticosteroid homeostasis. 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) and mineralocorticoid receptors (MR) are major regulators of corticosteroid action.

View Article and Find Full Text PDF

The primary function of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is to catalyze the conversion of inactive to active glucocorticoid hormones and to modulate local glucocorticoid-dependent gene expression. Thereby 11beta-HSD1 plays a key role in the regulation of metabolic functions and in the adaptation of the organism to energy requiring situations. Importantly, elevated 11beta-HSD1 activity has been associated with metabolic disorders, and recent investigations with rodent models of obesity and type 2 diabetes provided evidence for beneficial effects of 11beta-HSD1 inhibitors, making this enzyme a promising therapeutic target.

View Article and Find Full Text PDF

The prevalence of male reproductive disorders and testicular cancer is steadily increasing. Because the exposure to chemicals disrupting natural hormone action has been associated with these diseases, it is important to identify endocrine disrupting chemicals (EDCs) and their targets of action. Here, a 3D-structural database that can be applied for virtual screening approaches to facilitate the identification of EDCs was constructed.

View Article and Find Full Text PDF

Intracellular glucocorticoid reactivation is catalyzed by 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1), which functions predominantly as a reductase in cells expressing hexose-6-phosphate dehydrogenase (H6PDH). We recently showed that the ratios of cortisone to cortisol and 7-keto- to 7-hydroxy-neurosteroids are regulated by 11beta-HSD1 and very much depend on coexpression with H6PDH, providing cosubstrate NADPH. Here, we investigated the impact of H6PDH on the modulation of 11beta-HSD1-dependent interconversion of cortisone and cortisol by inhibitors and alternative substrates.

View Article and Find Full Text PDF

To assess the impact of the NADPH/NADP(+) ratio and the influence of extracellular glucose on 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) activity, we applied microsomal preparations and intact HEK-293 cells expressing 11beta-HSD1 in the presence or absence of hexose-6-phosphate dehydrogenase (H6PDH). A NADPH/NADP(+) ratio of ten or higher was required for efficient microsomal 11beta-HSD1 reductase activity. Measurements in intact cells suggested that the ER-luminal NADPH concentration is highly sensitive to fluctuating extracellular glucose levels.

View Article and Find Full Text PDF

17Beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) plays a pivotal role in the local synthesis of the most potent estrogen estradiol. Its expression is a prognostic marker for the outcome of patients with breast cancer and inhibition of 17beta-HSD1 is currently under consideration for breast cancer prevention and treatment. We aimed to identify nonsteroidal 17beta-HSD1 inhibitor scaffolds by virtual screening with pharmacophore models built from crystal structures containing steroidal compounds.

View Article and Find Full Text PDF

Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1.

View Article and Find Full Text PDF

Background: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed.

View Article and Find Full Text PDF

Apparent mineralocorticoid excess (AME) is a severe form of hypertension that is caused by impaired activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts biologically active cortisol into inactive cortisone. Mutations in HSD11B2 result in cortisol-induced activation of mineralocorticoid receptors and cause hypertension with hypokalemia, metabolic alkalosis, and suppressed circulating renin and aldosterone concentrations. This study uncovered the first patient with AME who was described in the literature, identified the genetic defect in HSD11B2, and provided evidence for a novel mechanism of reduced 11beta-HSD2 activity.

View Article and Find Full Text PDF

Recent epidemiological studies demonstrated a beneficial effect of coffee consumption for the prevention of type 2 diabetes, however, the underlying mechanisms remained unknown. We demonstrate that coffee extract, corresponding to an Italian Espresso, inhibits recombinant and endogenous 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity. The inhibitory component is heat-stable with considerable polarity.

View Article and Find Full Text PDF

11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. Inhibition of 11beta-HSD1 has considerable therapeutic potential for glucocorticoid-associated diseases including obesity, diabetes, wound healing, and muscle atrophy. Because inhibition of related enzymes such as 11beta-HSD2 and 17beta-HSDs causes sodium retention and hypertension or interferes with sex steroid hormone metabolism, respectively, highly selective 11beta-HSD1 inhibitors are required for successful therapy.

View Article and Find Full Text PDF

11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is essential for the local activation of glucocorticoid receptors (GR). Unlike unliganded cytoplasmic GR, 11beta-HSD1 is an endoplasmic reticulum (ER)-membrane protein with lumenal orientation. Cortisone might gain direct access to 11beta-HSD1 by free diffusion across membranes, indirectly via intracellular binding proteins or, alternatively, by insertion into membranes.

View Article and Find Full Text PDF

Organotins, important environmental pollutants widely used in agricultural and industrial applications, accumulate in the food chain and induce imposex in several marine species as well as neurotoxic and immunotoxic effects in higher animals. Reduced birth weight and thymus involution, observed upon exposure to organotins, can also be caused by excessive glucocorticoid levels. We now demonstrate that organotins efficiently inhibit 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), converting active 11beta-hydroxyglucocorticoids into inactive 11-ketoglucocorticoids, but not 11beta-HSD1, which catalyzes the reverse reaction.

View Article and Find Full Text PDF

Unlabelled: We have created PhenomicDB, a multi-species genotype/phenotype database by merging public genotype/phenotype data from a wide range of model organisms and Homo sapiens. Until now these data were available in distinct organism-specific databases (e.g.

View Article and Find Full Text PDF

The impact of hexose-6-phosphate dehydrogenase (H6PDH) on 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 activity was investigated upon coexpression in HEK-293 cells. Confocal microscopy analysis indicated colocalisation of both enzymes at the lumenal side of the endoplasmic reticulum (ER) membrane. Functional analysis in intact cells revealed fivefold stimulation of 11beta-HSD1 oxoreductase activity and sixfold decrease of dehydrogenase activity upon coexpression with H6PDH, without changing kinetic parameters in cell lysates.

View Article and Find Full Text PDF