Publications by authors named "Lyu W"

The rapid propagation of information in the digital epoch has brought a surge of rumors, creating a significant societal challenge. While prior research has primarily focused on the psychological aspects of rumors-such as the beliefs, behaviors, and persistence they evoke-there has been limited exploration of how rumors are processed in the brain. In this study, we experimented to examine both behavioral responses and EEG data during rumor detection.

View Article and Find Full Text PDF

Electroreduction of CO2 to CO represents a highly promising way for artificial carbon cycling, but obtaining high selectivity over a wide potential window remains a challenge due to the sluggish CO generation and diffusion kinetics. Here we report an integration of long-range P modified asymmetrical bismuth atomic site on an ordered macroporous carbon skeleton with mesoporous "wall" (MW-BiN3-POMC) for efficient electroreduction of CO2. In-depth in-situ investigations with theoretical computations reveal that the incorporation of long-range P atom is able to strengthen the orbital interaction between the C 2p of CO2 and Bi 6p, thereby establishing an electronic transport bridge for the activation of CO2 molecule.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is commonly used in healthcare for its ability to generate diverse tissue contrasts without ionizing radiation. However, this flexibility complicates downstream analysis, as computational tools are often tailored to specific MRI types and lack generalizability across the full spectrum of scans used in healthcare. Here, we introduce a versatile framework for the development and validation of pan-contrast AI models that can exhaustively cater to the full spectrum of scans achievable with MRI, enabling model deployment across scanner models, scan types, and age groups.

View Article and Find Full Text PDF

The vaginal microbiota is proposed to be associated with reproductive health. Exposure to metals during pregnancy is a risk factor for premature rupture of membranes (PROM). PROM can lead to serious maternal complications, thus, identifying the cause and therapeutic targets for it is crucial.

View Article and Find Full Text PDF

Continuous monitoring of nocturnal blood pressure is crucial for hypertension management and cardiovascular risk assessment. However, current clinical methods are invasive and discomforting, posing challenges. These traditional techniques often disrupt sleep, impacting patient compliance and measurement accuracy.

View Article and Find Full Text PDF

Objectives: Somatosensory Interaction Technology (SIT) is used in various aspects of geriatric care. We aimed to conduct a bibliometric analysis to summarize relevant publications and visualize publication characteristics, current hotspots, and development trends, thereby inspiring subsequent researches.

Methods: We searched the Web of Science Core Collection database for publications on the application of SIT in geriatric care.

View Article and Find Full Text PDF

Conjugated microporous polymers (CMPs) present high promise for chemiresistive gas sensing owing to their inherent porosities, high surface areas, and tunable semiconducting properties. However, the poor conductivity hinders their widespread application in chemiresistive sensing. In this work, three typical CMPs (PSATA, PSATB, and PSATT) are synthesized and their chemiresistive gas sensing performance is investigated for the first time.

View Article and Find Full Text PDF
Article Synopsis
  • * Findings show that increased surface hydroxyl content enhances carbon dioxide (CO) adsorption affinity, with the wettability type significantly impacting CO displacement behavior and oil recovery efficiency.
  • * The research concludes that oil-wet pores reduce CO-EOR efficiency, while certain pore structures can influence displacement speed, emphasizing the need to optimize wettability to improve recovery processes.
View Article and Find Full Text PDF

Future automated vehicles (AVs) are anticipated to feature innovative exteriors, such as textual identity indications, external radars, and external human-machine interfaces (eHMIs), as evidenced by current and forthcoming on-road testing prototypes. However, given the vulnerability of pedestrians in road traffic, it remains unclear how these novel AV appearances will impact pedestrians' crossing behaviour, especially in relation to their multimodal performance, including subjective perceptions, gaze patterns, and road-crossing decisions. To address this gap, this study pioneers an investigation into the influence of AVs' exterior design, in conjunction with their kinematics, on pedestrians' road-crossing perception and decision-making.

View Article and Find Full Text PDF

Photocatalytic conversion of CO into syngas is highly appealing, yet still suffers from the undesirable product yield due to the sluggish carrier transfer and the uncontrollable affinity between catalytic sites and intermediates. Here we report the fabrication of Co sites with tunable electron localization capability on two dimensional (2D) nanosheets assembled three dimensional (3D) ordered macroporous framework (3DOM-NS). The as-prepared Co-based 3DOM-NS catalysts exhibit attractive photocatalytic performances toward CO reduction, among which the cobalt sulfide one (3DOM Co-SNS) shows the highest syngas generation rate up to 347.

View Article and Find Full Text PDF

Venous blood collection is a widely used medical diagnostic technique, and with rapid advancements in robotics, robotic venous blood collection has the potential to replace traditional manual methods. The success of this robotic approach is heavily dependent on the quality of vein imaging. In this paper, we develop a vein imaging device based on the simulation analysis of vein imaging parameters and propose a U-Net+ResNet18 neural network for vein image segmentation.

View Article and Find Full Text PDF

Adenosine deaminases acting on RNA (ADARs) impact diverse cellular processes and pathological conditions, but their functions in early cell-fate specification remain less understood. To gain insights here, we began by charting time-course RNA editing profiles in human organs from fetal to adult stages. Next, we utilized hPSC differentiation to experimentally probe ADARs, harnessing brain organoids as neural specific, and teratomas as pan-tissue developmental models.

View Article and Find Full Text PDF

Defect engineering is an effective method for tuning the performance of thermoelectric materials and shows significant promise in advancing thermoelectric performance. Given the rapid progress in this research field, this Review summarizes recent advances in the application of defect engineering in thermoelectric materials, offering insights into how defect engineering can enhance thermoelectric performance. By manipulating the micro/nanostructure and chemical composition to introduce defects at various scales, the physical impacts of diverse types of defects on band structure, carrier and phonon transport behaviors, and the improvement of mechanical stability are comprehensively discussed.

View Article and Find Full Text PDF

There is a great controversy between academic talent mobility and academic output. This paper obtains the list of mobile academic talents (experimental group) from NSF. It matches them into the control group list according to the indicators of an academic institution, department, research direction, entry time, age, and NSF fund obtained in the near year.

View Article and Find Full Text PDF

A temporal dissipative soliton (TDS) with controllable morphology is demonstrated in a time-delayed coupled optoelectronic oscillator (OEO) driven by two optical carriers with different wavelengths. The morphology of the TDS is controlled by the power difference between the two optical carriers and the delay difference induced by the group-velocity dispersion (GVD) in the OEO loop. When the delay difference is small, the OEO operates in a single-soliton state.

View Article and Find Full Text PDF

An approach to suppressing Brillouin scattering-induced noise in long-haul high-power radio-over-fiber (RoF) links is proposed via non-uniformly distributed four-tone phase modulation. Four single-tone signals with uneven frequency intervals are utilized to phase modulate the optical signal before transmission. The power transferring from the optical carrier to the non-uniformly distributed modulation sidebands largely suppresses the Brillouin scattering-induced relative intensity noise (RIN).

View Article and Find Full Text PDF

Objective: To verify whether the bleeding risk assessment guidelines from the 9th American College of Chest Physicians (ACCP) are prognostic for respiratory intensive care unit (RICU) patients and to explore risk factors for hemorrhages, we conducted a secondary data analysis based on our previously published cohort study of venous thromboembolism.

Patients And Methods: We performed a secondary data analysis on the single-center prospective cohort from our previous study. Patients admitted to the RICU at Beijing Chao-Yang Hospital from August 1, 2014 to December 31, 2020 were included and followed up until discharge.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that severely diminishes the quality of life for millions. The NLRP3 inflammasome, a critical mediator of inflammation, has emerged as a promising therapeutic target for AD. In this study, we report the development and optimization of a novel series of sulfonylurea-based NLRP3 inhibitors, with a focus on compound MC1 for the treatment of AD.

View Article and Find Full Text PDF

Chemerin is an adipokine with chemotactic activity to a subset of leukocytes. Chemerin binds to 3 G protein-coupled receptors, including chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C chemokine receptor-like 2 (CCRL2). Here, we report that GPR1 is capable of Gi signaling when stimulated with full-length chemerin or its C-terminal nonapeptide (C9, YFPGQFAFS).

View Article and Find Full Text PDF

Parent-child communication plays a crucial role in children's healthy growth. Nevertheless, there is currently a paucity of instruments designed to measure the quality of parent-child communication from a psychological perspective. Accordingly, based on the self psychology theory, this study has developed the Parent-Child Communication Quality Scale (PCCQS) to assess the quality of parent-child communication in terms of the extent to which children's psychological needs are met.

View Article and Find Full Text PDF

All-solid-state batteries suffer from a loss of contact between the electrode and electrolyte particles, leading to poor cyclability. Here, a void-free ion-permeable interface between the solid-state polymer electrolyte and electrode is constructed in situ during cycling using charge/discharge voltage as the stimulus. During the charge-discharge, the permeation phase fills the voids at the interface and penetrates the electrode, forming strong bonds with the cathode and effectively mitigating the contact problem.

View Article and Find Full Text PDF

Despite the cerebellum's crucial role in brain functions, its early development, particularly in relation to the cerebrum, remains poorly understood. Here, we examine cerebellocortical connectivity using over 1,000 high-quality resting-state functional MRI scans of children from birth to 60 months. By mapping cerebellar topography with fine temporal detail for the first time, we show the hierarchical and contralateral organization of cerebellocortical connectivity from birth.

View Article and Find Full Text PDF