Zhongguo Zhong Yao Za Zhi
December 2024
Gambogic acid, a caged xanthone compound derived from Garcinia, has been proven to be an important substance basis for the pharmacological effects of the plant. In recent years, it has received continuous attention due to its broad and significant pharmacological activities. Modern pharmacological investigations have demonstrated that gambogic acid endows various therapeutic effects such as anti-inflammatory, antioxidant, and anti-tumor activities, as well as benefits in retinopathy, organ protection, anti-microbial infection, bone protection, and neuropathic pain relief.
View Article and Find Full Text PDFAs artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity.
View Article and Find Full Text PDFAs the parameter size of large language models (LLMs) continues to expand, there is an urgent need to address the scarcity of high-quality data. In response, existing research has attempted to make a breakthrough by incorporating federated learning (FL) into LLMs. Conversely, considering the outstanding performance of LLMs in task generalization, researchers have also tried applying LLMs within FL to tackle challenges in relevant domains.
View Article and Find Full Text PDFBackground: The Triglyceride-glucose (TyG) index is a marker for insulin resistance and metabolic syndrome, while Helicobacter pylori is linked to gastrointestinal diseases and may affect metabolic risks. This study examined the association between the TyG index and H. pylori infection in adults.
View Article and Find Full Text PDFQuantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.
View Article and Find Full Text PDFIntroduction: Speckle tracking ultrasound is a novel technique for evaluating diaphragm movement, yet its guidance in weaning mechanically ventilated patients remains unclear. In this study, we assessed diaphragmatic function using speckle tracking ultrasound and guided the weaning process.
Methods: A total of 86 mechanically ventilated patients were included and divided into successful or failed weaning groups.
Zhonghua Yu Fang Yi Xue Za Zhi
December 2024
To investigate the level of serum-neutralizing antibodies against Coxsackievirus A6 (CVA6) in a healthy population in Tianjin City from 2014 to 2020. From March 2014 to March 2020, 5 492 healthy volunteers were recruited in Tianjin City. The demographic information, personal hygiene habits, living environment hygiene, contact history with hand, foot and mouth disease cases within 6 months before the survey, history of upper respiratory tract infection, and medical history of the subjects were investigated using a self-designed questionnaire.
View Article and Find Full Text PDFObjective: To elucidate how spinal manipulative therapy (SMT) exerts its analgesic effects through regulating brain function in lumbar disc herniation (LDH) patients by utilizing resting-state functional magnetic resonance imaging (rs-fMRI).
Methods: From September 2021 to September 2023, we enrolled LDH patients (LDH group, n=31) and age- and sex-matched healthy controls (HCs, n=28). LDH group underwent rs-fMRI at 2 distinct time points (TPs): prior to the initiation of SMT (TP1) and subsequent to the completion of the SMT sessions (TP2).
The Glycyrrhizae Radix et Rhizoma products processed with different methods, including raw materials(S) and products processed with honey according to the method in the Chinese Pharmacopoeia(Z) and Jianchangbang method(M), were analyzed in terms of the odor profile and volatile components by the electronic nose and headspace-gas chromatography-mass spectrometry(HS-GC-MS). The differential components in the three products were screened by chemometrics, on the basis of which the relative odor activity value(ROAV) was adopted to elucidate the odor differences among different products and the material basis of their odors. The results showed that the electronic nose effectively distinguished the products of Glycyrrhizae Radix et Rhizoma processed with different methods.
View Article and Find Full Text PDFNatural self-purification of water is limited by mass transfer processes between inert oxygen (O) and stable pollutants. This process must rely on large energy inputs and resource consumption, which have become a global challenge in the environmental field. Here, we greatly amplify this self-purification effect of natural dissolved oxygen (DO) by nonexpendable HO triggering a DRC catalyst with a micro-potential difference surface.
View Article and Find Full Text PDFThe long-term challenge in overall water splitting is the conflict in the pH condition of electrolytes for achieving efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at the same time, in addition to the typical cost issue in catalysts. It hence raises an intense research interest in seeking cost-efficient non-noble metal electrocatalysts as well as compromising electrolyte conditions for electrocatalytic HER and OER. To tackle the problems, various approaches are demonstrated to engineer the electronic effect on the active sites of catalysts for enhancing the activities.
View Article and Find Full Text PDFAsphalt pavement inevitably undergoes aging and deterioration of service performance under atmospheric and solar radiation conditions. This study developed an efficient and durable self-healing asphalt based on the designability of the polymer chemical structure and reversible recombination of covalent bonds. Moreover, the effect of long-term thermal oxidative aging and ultraviolet (UV) aging on self-healing promotion by polymers (PUS) containing dynamic disulfide bonds was investigated through a nonthixotropic evaluation system.
View Article and Find Full Text PDFThe emergence of 2D ferroelectrics, sliding ferroelectrics, and 2D ferroelectric semiconductors has greatly expanded the potential applications of two-dimensional ferroelectric field-effect transistors (2D FeFETs) in nonvolatile memory, neuromorphic synapses, and negative capacitance. However, the interaction between ferroelectric and semiconductor layers remains not well understood, and characterization methods to correlate carriers and polarization dynamics at the nanoscale are still lacking. Utilizing in situ scanning microwave impedance microscopy and piezoresponse force microscopy measurements, we employed a Pb(ZrTi)O/MoS-based 2D FeFET as an example to reveal, with high spatial resolution, the microscopic redistribution of carriers.
View Article and Find Full Text PDFTranscriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-variants to enhance model building for TF downstream target genes.
View Article and Find Full Text PDFDuring the reaction process in lithium-sulfur batteries, Lewis acidic lithium polysulfides (LiPSs) affect ion distribution and overall electrolyte stability, degrading battery performance and product distribution (e.g., LiS).
View Article and Find Full Text PDFUnraveling the robust self-adaptivity and minimal energy-dissipation of soft reticular materials for environmental catalysis presents a compelling yet unexplored avenue. Herein, a top-down strategy, tailoring from the unique linkage basis, flexibility degree, skeleton electronics to trace-guest adaptability, is proposed to fill the understanding gap between micro-soft covalent organic frameworks (COFs) and photocatalytic performance. The thio(urea)-basis-dominated linkage within benzotrithiophene-based COFs induce the framework contraction/swelling (intralayer micro-flexibility) in response to tetrahydrofuran or water.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Background: Women make up nearly 60% of fitness App users and play an important role in the operation and development of these Apps. Despite the widespread adoption of fitness Apps in recent years due to their many physical and mental benefits, the use of Apps tends to be short-term, and user engagement is relatively low. Little is known about the factors that motivate female users to consistently use fitness Apps.
View Article and Find Full Text PDFThe capacity of indoor plants including green walls to capture, deposit and remediate individual volatile organic compounds (VOCs) has been well documented. However, in realistic settings, plant systems are exposed to a complex mixture of VOCs from highly varied various emission sources. Gasoline vapour is one of the major sources of these emissions, containing high concentrations of the carcinogens benzene, toluene, ethylbenzene and xylene (BTEX).
View Article and Find Full Text PDFThe mechanical properties at small length scales are not only significant for understanding the intriguing size-dependent behaviors but also critical for device applications. Nanoindentation via atomic force microscopy is widely used for small-scale mechanical testing, yet determining the Young's modulus of quasi-2D films from freestanding force-displacement curve of nanoindentation remains challenging, complicated by both bending and stretching that are highly nonlinear. To overcome these difficulties, a machine learning model is developed based on the back propagation (BP) neural network and finite element training to accurately determine the Young's modulus, pretension, and thickness of freestanding films from nanoindentation force-displacement curves simultaneously, improving the computational efficiency by two orders of magnitude over conventional brute force curve fitting.
View Article and Find Full Text PDF