Publications by authors named "Lysia S Forno"

Alpha-synuclein is a major component of Lewy bodies and glial cytoplasmic inclusions, pathological hallmarks of idiopathic Parkinson's disease and multiple system atrophy, and it is assumed to be aetiologically involved in these conditions. However, the quantitative status of brain alpha-synuclein in different Parkinsonian disorders is still unresolved and it is uncertain whether alpha-synuclein accumulation is restricted to regions of pathology. We compared membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein, both the full-length 17 kDa and high molecular weight species, by western blotting in autopsied brain of patients with Parkinson's disease (brainstem-predominant Lewy body disease: n = 9), multiple system atrophy (n = 11), progressive supranuclear palsy (n = 16), and of normal controls (n = 13).

View Article and Find Full Text PDF

alpha-Synuclein expression is increased in dopaminergic neurons challenged by toxic insults. Here, we assessed whether this upregulation is accompanied by pathologic accumulation of alpha-synuclein and protein modifications (i.e.

View Article and Find Full Text PDF

CNS neurons are endowed with the ability to recover from cytotoxic insults associated with the accumulation of proteinaceous aggregates in mouse models of polyglutamine disease, but the cellular mechanism underlying this phenomenon is unknown. Here, we show that autophagy is essential for the elimination of aggregated forms of mutant huntingtin and ataxin-1 from the cytoplasmic but not nuclear compartments. Human orthologs of yeast autophagy genes, molecular determinants of autophagic vacuole formation, are recruited to cytoplasmic but not nuclear inclusion bodies in vitro and in vivo.

View Article and Find Full Text PDF

Attempts at classification of fronto-temporal dementias have not yet been completely successful. We report ten cases of sporadic fronto-temporal dementia (FTD) with ubiquitin-positive neuronal inclusions in cortex or in motor neurons in brain stem or spinal cord, which may contribute to the classification of FTD. Marked variation in clinical presentation as well as in pathological findings was the rule in all cases.

View Article and Find Full Text PDF