The exact route of iron through the kidney and its regulation during iron overload are not completely elucidated. Under physiologic conditions, non-transferrin and transferrin bound iron passes the glomerular filter and is reabsorbed through kidney epithelial cells, so that hardly any iron is found in the urine. To study the route of iron reabsorption through the kidney, we analyzed the location and regulation of iron metabolism related proteins in kidneys of mice with iron overload, elicited by iron dextran injections.
View Article and Find Full Text PDFFerritin turnover plays a major role in tissue iron homeostasis, and ferritin malfunction is associated with impaired iron homeostasis and neurodegenerative diseases. In most eukaryotes, ferritin is considered an intracellular protein that stores iron in a nontoxic and bioavailable form. In insects, ferritin is a classically secreted protein and plays a major role in systemic iron distribution.
View Article and Find Full Text PDFEpithelial barriers are found in many tissues such as the intestine, kidney and brain where they separate the external environment from the body or a specific compartment from its periphery. Due to the tight junctions that connect epithelial barrier-cells (EBCs), the transport of compounds takes place nearly exclusively across the apical or basolateral membrane, the cell-body and the opposite membrane of the polarized EBC, and is regulated on numerous levels including barrier-specific adapted trafficking-machineries. Iron is an essential element but toxic at excess.
View Article and Find Full Text PDFThe universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells.
View Article and Find Full Text PDFHeme-oxygenase 1 is an endoplasmic reticulum-anchored enzyme that breaks down heme into iron, carbon monoxide and biliverdin. Heme is a hydrophobic co-factor in many proteins, including hemoglobin. Free heme is highly cytotoxic and, therefore, both heme synthesis and breakdown are tightly regulated.
View Article and Find Full Text PDFBackground: The lifespan of red blood cells is terminated when macrophages remove senescent red blood cells by erythrophagocytosis. This puts macrophages at the center of systemic iron recycling in addition to their functions in tissue remodeling and innate immunity. Thus far, erythrophagocytosis has been studied by evaluating phagocytosis of erythrocytes that were damaged to mimic senescence.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
March 2011
Ferritin is known as a well-conserved iron detoxification and storage protein that is found in the cytosol of many prokaryotic and eukaryotic organisms. In insects and worms, ferritin has evolved into a classically secreted protein that transports iron systemically. Mammalian ferritins are found intracellularly in the cytosol, as well as in the nucleus, the endo-lysosomal compartment and the mitochondria.
View Article and Find Full Text PDFThe serum ferritin concentration is a clinical parameter measured widely for the differential diagnosis of anemia. Its levels increase with elevations of tissue iron stores and with inflammation, but studies on cellular sources of serum ferritin as well as its subunit composition, degree of iron loading and glycosylation have given rise to conflicting results. To gain further understanding of serum ferritin, we have used traditional and modern methodologies to characterize mouse serum ferritin.
View Article and Find Full Text PDFVibrio cholerae is the etiological agent of cholera. Its natural reservoir is the aquatic environment. To date, practical typing of V.
View Article and Find Full Text PDFIdentification and typing of spoilage and pathogenic microorganisms have become major objectives over the past decade in microbiology. In food, strain typing is necessary to ensure food safety and for linking cases of foodborne infections to suspected items. Recent advances in molecular biology have resulted in the development of numerous DNA-based methods for discrimination among bacterial strains.
View Article and Find Full Text PDF