Publications by authors named "Lyoo I"

Background: Glutamatergic signaling is essential for modulating synaptic plasticity and cognition. However, the dynamics of glutamatergic activity over the 24-hour sleep-wake cycle, particularly in relation to sleep, remain poorly understood. This study aims to investigate diurnal variations in brain Glx levels-representing the combined concentrations of glutamate and glutamine-in humans and to explore their implications for cognitive performance and sleep pressure.

View Article and Find Full Text PDF

Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50).

View Article and Find Full Text PDF

Anosmia, characterized by the loss of smell, is associated not only with dysfunction in the peripheral olfactory system but also with changes in several brain regions involved in olfactory processing. Specifically, the orbitofrontal cortex is recognized for its pivotal role in integrating olfactory information, engaging in bidirectional communication with the primary olfactory regions, including the olfactory cortex, amygdala, and entorhinal cortex. However, little is known about alterations in structural connections among these brain regions in patients with anosmia.

View Article and Find Full Text PDF

Study Objectives: Shift work interferes with circadian rhythms, affecting sleep quality and cognitive function. Poor sleep quality in shift worker (SW)s can impair psychomotor performance due to fatigue and sleepiness, increasing the risk of errors, accidents, and reduced productivity. Given the potential for atrophic changes in the hippocampus due to sleep disturbances, our study investigates how poor sleep quality correlates with hippocampal structural alterations and impacts psychomotor performance among SWs.

View Article and Find Full Text PDF

The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above.

View Article and Find Full Text PDF

Secretion of translationally controlled tumor protein (TCTP) was found in body fluids during the late phase of allergic reactions, implicating TCTP in allergic diseases. Furthermore, blocking TCTP has been shown to be helpful in treating asthma and allergies in animal models. The objectives of this study were to produce anti-TCTP monoclonal antibodies (mAbs), test their ability to inhibit the cytokine-like function of dimeric TCTP (dTCTP) in vitro and to assess their therapeutic effects in a murine model of ovalbumin (OVA)-induced airway inflammation.

View Article and Find Full Text PDF

A considerable proportion of individuals exposed to trauma experience chronic and persistent posttraumatic stress disorder (PTSD). However, the specific brain and clinical features that render trauma-exposed individuals more susceptible to enduring symptoms remain elusive. This study investigated 112 trauma-exposed participants who had been diagnosed with PTSD and 112 demographically-matched healthy controls.

View Article and Find Full Text PDF

Childhood overweight/obesity has been associated with negative consequences related to brain function and may involve alterations in white matter pathways important for cognitive and emotional processing. Aerobic physical activity is a promising lifestyle factor that could restore white matter alterations. However, little is known about either regional white matter alterations in children with overweight/obesity or the effects of aerobic physical activity targeting the obesity-related brain alterations in children.

View Article and Find Full Text PDF

Background: Complex regional pain syndrome (CRPS) is characterized by continued amplification of pain intensity. Given the pivotal roles of the insula in the perception and interpretation of pain, we examined insular functional connectivity and its associations with clinical characteristics in patients with CRPS.

Methods: Twenty-one patients with CRPS and 49 healthy controls underwent resting-state functional magnetic resonance imaging.

View Article and Find Full Text PDF
Article Synopsis
  • Complex Regional Pain Syndrome (CRPS) is a chronic pain disorder linked to heightened pain perception and mental distress, often influenced by pain catastrophizing, which includes feelings of helplessness and overemphasizing pain.
  • A study involving 21 CRPS patients and 49 healthy controls used resting-state fMRI to analyze whole-brain functional connectivity differences and their relationship with pain catastrophizing.
  • Results indicated CRPS patients had increased connectivity in somatosensory areas suggesting intensified pain perception, while lower connectivity in certain brain networks was associated with cognitive and emotional difficulties in processing pain, both linked to higher pain catastrophizing levels.
View Article and Find Full Text PDF

The FK506 binding protein 5 (FKBP5) is a co-chaperone that regulates the activity of the glucocorticoid receptor (GR) and has been reported to mediate stress resilience. This study aimed to determine the effects of deletion on acute stress-induced recognition memory impairment and hippocampal GR signaling. Wild-type and -knockout mice were subjected to acute uncontrollable stress induced by restraint and electrical tail shock.

View Article and Find Full Text PDF

Trauma elicits various adaptive and maladaptive responses among all exposed people. There may be distinctively different patterns of adaptation/maladaptation or types according to neurobiological predisposition. The present study aims to dissect the heterogeneity of posttraumatic conditions in order to identify clinically meaningful subtypes in recently traumatized individuals and evaluate their neurobiological correlates and long-term prognosis.

View Article and Find Full Text PDF

Research integrating molecular and imaging data provides important insights into how the genetic profile associated with dopamine signaling influences inter-individual differences in brain functions. However, the effects of genetic variations in dopamine signaling on the heterogeneity of brain changes induced by repetitive transcranial magnetic stimulation (rTMS) still remain unclear. The current study examined the composite effects of genetic variations in dopamine-related genes on rTMS-induced brain responses in terms of the functional network connectivity and working memory performance.

View Article and Find Full Text PDF

Background: The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear.

Methods: Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users 60 controls) and adults (54 MA users 60 controls).

View Article and Find Full Text PDF

Loss of olfaction, or anosmia, frequently accompanies emotional dysfunctions, partly due to the overlapping brain regions between the olfactory and emotional processing centers. Here, we investigated whether anosmia was associated with gray matter volume alterations at a network level, and whether these alterations were related to the olfactory-specific quality of life (QOL) and depressive symptoms. Structural brain magnetic resonance imaging was acquired in 22 individuals with postinfectious or idiopathic anosmia (the anosmia group) and 30 age- and sex-matched controls (the control group).

View Article and Find Full Text PDF

Cannabis has been widely used medically and recreationally for centuries. With a renewed interest in the therapeutic use of cannabinoids, which are active components of , it has become important to understand the cannabinoids' neurobiological mechanisms related to both therapeutic and harmful effects. This review summarizes the effects of two major cannabinoids, delta-9-tetrahydrocannabinol and cannabidiol, on brain metabolites.

View Article and Find Full Text PDF

Growing evidence indicates that type 2 diabetes mellitus (T2DM)-related cognitive dysfunction may develop in the early stage of the disease and is often accompanied by hippocampal structural alterations. In the current study, we investigated volume and shape alterations of the hippocampus at a subregional level in patients with T2DM. With the use of high-resolution brain structural images that were obtained from 30 T2DM patients with less than 5 years of disease duration and 30 healthy individuals, volumetric and shape analyses were performed.

View Article and Find Full Text PDF

Background: Cytidine-5'-diphosphate choline (CDP-choline) has been suggested to exert neuroprotective and neuroreparative effects and may be beneficial for patients with stimulant dependence. This randomized, double-blind, placebo-controlled study in methamphetamine (MA) dependence investigated effects of CDP-choline on the brain structures and their associations with craving and MA use.

Methods: MA users (n = 44) were randomized to receive 2 g/day of CDP-choline (n = 22) or placebo (n = 22) for 8 weeks.

View Article and Find Full Text PDF

Computerized relaxation training has been suggested as an effective and easily accessible intervention for individuals with psychological distress. To better elucidate the neural mechanism that underpins the effects of relaxation training, we investigated whether a 10-session computerized relaxation training program changed prefrontal gamma-aminobutyric acid (GABA) levels and cerebral blood flow (CBF) in women with psychological distress. We specifically focused on women since they were reported to be more vulnerable to develop stress-related disorders than men.

View Article and Find Full Text PDF

Background: Recent evidence suggests that hyperbaric oxygenation (HBO), which has been used as an effective treatment for certain types of tissue injury, may change neural activities in the human brain and subsequently improve symptoms of psychiatric disorders. To scrutinize the neural mechanism of HBO in the human brain, we investigated whether 20 sessions of HBO changed regional cerebral blood flow (rCBF) of the limbic system in firefighters with mild traumatic brain injury (mTBI) and subjective emotional distress.

Methods: Twenty firefighters with mTBI and mild emotional distress were treated with HBO at a relatively low pressure of 1.

View Article and Find Full Text PDF

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that regulates gene expressions in response to decreased oxygen levels in the tissue, or hypoxia. HIF-1 exerts protective effects against hypoxia by mediating mitochondrial metabolism and consequently reducing oxidative stress. Recently, increased levels of oxidative stress and abnormal energy metabolism in the brain have been suggested to play essential roles in the pathogenesis of depression.

View Article and Find Full Text PDF