A suite of mechanistic atmospheric and mercury (Hg) cycling and bioaccumulation models is applied to simulate atmospheric Hg deposition and Hg concentrations in the water column and in fish in a Hg-impaired freshwater lake located in the northeastern United States that receives its Hg loading primarily through deposition. Two future-year scenarios evaluate the long-term response of fish tissue Hg concentrations to reductions in local and nationwide coal-fired electric-generating utility and other Hg emissions and an increase or decrease in global (non-US) Hg emissions. Results indicate that fish tissue Hg concentrations in this ecosystem could require approximately 3 yr to 8 yr to begin to respond to declines in US emissions and deposition with a fish Hg reduction proportional to deposition reduction requiring over 50 yr.
View Article and Find Full Text PDFEnviron Sci Technol
December 2010
The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors.
View Article and Find Full Text PDF