Integrin-linked kinase (ILK) was assesed as a therapeutic target in glioblastoma xenograft models through multiple endpoints including treatment related changes in the tumor microenvironment. Glioblastoma cell lines were tested in vitro for sensitivity toward the small-molecule inhibitors QLT0254 and QLT0267. Cell viability, cell cycle, and apoptosis were evaluated using MTT assay, flow cytometry, caspase activation, and DAPI staining.
View Article and Find Full Text PDFPurpose: Limited drug penetration in solid tumors is a potential mechanism of resistance for many anticancer drugs. Taxanes represent a class of drugs that are currently undergoing a new round of development, but with little known of their ability to penetrate and distribute relative to blood vessels within solid tumors.
Experimental Design: We assessed the tissue penetration of paclitaxel and docetaxel in HCT-116 tumor xenografts and in multilayered cell culture (MCC), a three-dimensional cell culture model of the tumor extravascular compartment.
Breast Cancer Res Treat
December 2007
Developing novel synergistic and more effective combination treatments is necessary for better management of breast cancer in the clinic. It is established that HER-2 overexpressing breast cancers are sensitive to the HER-1 (epidermal growth factor receptor (EGFR)) inhibitor gefitinib, but that this targeted agent produces only moderate therapeutic effects in vivo. Here, we use a model of ER(+) HER-2 overexpressing MCF-7 breast cancer (MCF-7(HER-2)) to identify, as broadly as possible, the in vivo microenvironmental and molecular therapeutic responses to gefitinib to predict a therapeutically viable target for gefitinib-based combination treatment.
View Article and Find Full Text PDFThe study of angiogenesis as a therapeutic target requires reliable in vivo assays that can provide physiologically relevant data. A murine in vivo Matrigel-based angiogenesis assay is presented here which includes the quantitative assessment of vascular-specific indicators of neovascularization. Matrigel containing 175 ng/ml bFGF is encapsulated in synthetic chambers which are implanted subcutaneously in C57/B16J mice.
View Article and Find Full Text PDFBackground And Purpose: Tirapazamine is a hypoxic cytotoxin currently undergoing Phase II/III clinical evaluation in combination with radiation and chemotherapeutics for the treatment of non-hematological cancers. Tissue penetration studies using multicellular models have suggested that tirapazamine exposure may be limited to cells close to blood vessels. However, animal studies show tirapazamine enhances the anti-tumour activity of radiation and chemotherapy and clinical studies with tirapazamine, so far, are promising.
View Article and Find Full Text PDFWe recently reported that SHIP restrains LPS-induced classical (M1) activation of in vitro differentiated, bone marrow-derived macrophages (BMMPhis) and that SHIP upregulation is essential for endotoxin tolerance. Herein, we show that in vivo differentiated SHIP-/- peritoneal (PMPhis) and alveolar (AMPhis) macrophages, unlike their wild-type counterparts, are profoundly M2 skewed (alternatively activated), possessing constitutively high arginase I (ArgI) and Ym1 levels and impaired LPS-induced NO production. Consistent with this, SHIP-/- mice display M2-mediated lung pathology and enhanced tumor implant growth.
View Article and Find Full Text PDFThe effects of HER-2/neu overexpression on the tumor microenvironment in an aggressive breast cancer xenograft model were investigated. These studies focused on tumors derived following the subcutaneous injection of MDA-MB-435/LCC6 cells transfected with human c-erbB2 (LCC6(HER-2)) into SCID-Rag2M mice. LCC6(HER-2) tumors were more viable (H&E-stained tumor sections) than isogenic vector control tumors (LCC6(Vector)).
View Article and Find Full Text PDFTo examine the tumor microregional effects after gemcitabine administration to mice, we mapped the location of proliferating and hypoxic cells relative to vasculature in human colon cancer xenografts. The S-phase marker bromodeoxyuridine was used as a surrogate of drug effect and administered 2 hours before tumor excision, whereas vessel position and perfusion were assessed via staining for CD31 and intravenous injection of carbocyanine, respectively. Hypoxia was detected using pimonidazole.
View Article and Find Full Text PDFThe failure of many anticancer drugs to control growth of solid cancers may stem in part from inadequate delivery to tumor regions distant from vasculature. Although the identification of new anticancer drug targets has led to the development of many new drug candidates, there is a lack of methodology for identifying drugs that adequately penetrate tumor tissue. We have developed a novel multilayered cell culture-based assay, which detects the penetration of anticancer drugs based on their effect within tissue.
View Article and Find Full Text PDFBromodeoxyuridine (BrdUrd) is used extensively to measure the fraction of proliferating cells in tumors. Unlike endogenous markers of proliferation such as proliferating cell nuclear antigen (PCNA) and Ki-67, BrdUrd is exogenously administered and reaches the tumor via vasculature where it must then diffuse throughout the tissue to label S-phase cells. In this study, we examine the dose dependence of BrdUrd on the tumor distribution of labeled cells in histological sections.
View Article and Find Full Text PDF