Publications by authors named "Lynnette P McCluskey"

Background: Limited treatment options exist for damaged nerves and despite impressive advances in tissue engineering, scientists and clinicians have yet to fully replicate nerve development and recruitment. Innervation is a critical feature for normal organ function. While most organs are innervated prior to birth, a rare example of postnatal nerve recruitment occurs in the natural development of secondary teeth during adolescence.

View Article and Find Full Text PDF

Increased sugar intake and taste dysfunction have been reported in patients with inflammatory bowel disease (IBD), a chronic disorder characterized by diarrhea, pain, weight loss and fatigue. It was previously unknown whether taste function changes in mouse models of IBD. Mice consumed dextran sodium sulfate (DSS) during three 7-day cycles to induce chronic colitis.

View Article and Find Full Text PDF

Increased sugar intake and taste dysfunction have been reported in patients with inflammatory bowel disease (IBD), a chronic disorder characterized by diarrhea, pain, weight loss and fatigue. It was previously unknown whether taste function changes in mouse models of IBD. Mice consumed dextran sodium sulfate (DSS) during three 7-day cycles to induce chronic colitis.

View Article and Find Full Text PDF

Taste receptor cells are sensory specialists that detect chemicals in food and drink. An exciting new report in PLOS Biology suggests that some taste cells could also be involved in immune surveillance like counterparts in the intestine.

View Article and Find Full Text PDF

Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells.

View Article and Find Full Text PDF

Background: As the coronavirus disease 2019 (COVID-19) pandemic continues, there has been a growing interest in the chronic sequelae of COVID-19. Neuropsychiatric symptoms are observed in the acute phase of infection, but there is a need for accurate characterization of how these symptoms evolve over time. Additionally, African American populations have been disproportionately affected by the COVID-19 pandemic.

View Article and Find Full Text PDF

There is strong evidence for gut-taste bud interactions that influence taste function, behavior and feeding. However, the effect of gut inflammation on this axis is unknown despite reports of taste changes in gastrointestinal (GI) inflammatory conditions. Lipopolysaccharide (LPS), an inflammatory stimulus derived from gram-negative bacteria, is present in the normal GI tract and levels increase during high-fat feeding and gut infection and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic consumption of sugar-sweetened beverages and diets high in sucrose can lead to metabolic issues and obesity in mammals, yet their impact on taste systems is not well studied.
  • In an experiment with female Sprague Dawley rats, those given free access to a 30% sucrose solution showed increased sugar intake after 14 days, but overall food intake decreased, indicating higher energy consumption despite less solid food intake.
  • Recordings from the chorda tympani nerve indicated that chronic sucrose exposure reduced taste responses to not only high concentrations of sweet stimuli but also salt, highlighting a potential impact on taste perception due to the form of dietary sugar consumed.
View Article and Find Full Text PDF

Lymphatic vessel networks can expand and regress, with consequences for interstitial fluid drainage and nutrient supply to tissues, inflammation, and tumor spread. A diet high in sodium stimulates hyperplasia of cutaneous lymphatic capillaries. We hypothesized that dietary sodium restriction would have the opposite effect, shrinking lymphatic capillaries in the tongue.

View Article and Find Full Text PDF

Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye.

View Article and Find Full Text PDF

The peripheral taste system presents an excellent model for studying the consequences of neural injury, for the damaged nerve and sensory cells and the neighboring, intact neural cells. Sectioning a primary afferent nerve, the chorda tympani (CT), rapidly recruits neutrophils to both sides of the tongue. The bilateral neutrophil response induces transient functional deficits in the intact CT.

View Article and Find Full Text PDF

Dietary sodium restriction coupled with axotomy of the rat chorda tympani nerve (CTX) results in selectively attenuated taste responses to sodium salts in the contralateral, intact chorda tympani nerve. Converging evidence indicates that sodium deficiency also diminishes the activated macrophage response to injury on both the sectioned and contralateral, intact sides of the tongue. Because a sodium-restricted diet causes a robust increase in circulating aldosterone, we tested the hypothesis that changes in neurophysiological and immune responses contralateral to the CTX could be mimicked by aldosterone administration instead of the low-sodium diet.

View Article and Find Full Text PDF

The combination of dietary sodium depletion and unilateral chorda tympani (CT) nerve section decreases sodium taste function in the intact CT nerve. However, functional changes have not been examined prior to day 4 postsectioning, even though degenerative and inflammatory responses are robust during that period. Rats received unilateral CT section and/or dietary sodium depletion, accomplished by 2 injections of furosemide and a sodium-restricted diet, on day 0.

View Article and Find Full Text PDF

Macrophages are recruited to both sides of the tongue following unilateral chorda tympani (CT) nerve injury. The mechanisms responsible for recruiting these macrophages to the peripheral taste system are unknown. Neural degeneration in other systems leads to the upregulation of small molecules that function as chemoattractant cytokines, or chemokines.

View Article and Find Full Text PDF

In the peripheral taste system, activated macrophages are recruited to both sides of the tongue after unilateral sectioning of the chorda tympani nerve (CT). Neural degeneration elicits macrophage entry in other systems by upregulating vascular adhesion molecules. We hypothesized that CT sectioning leads to a bilateral increase in intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression on lingual vessels.

View Article and Find Full Text PDF

Erectile dysfunction (ED) is estimated to affect more than 30 million American men and 152 million men worldwide. Therapeutic agents targeting the nitric oxide/cyclic GMP signaling pathway have successfully treated patients with ED; however, the efficacies of these treatments are significantly lower in specific populations such as patients with diabetes. The goal of this study was to discover and identify new endothelium-derived relaxing factors involved in the regulation of erectile function, providing alternative therapeutic targets for treatment of ED.

View Article and Find Full Text PDF

Classically, nitric oxide (NO) formed by endothelial NO synthase (eNOS) freely diffuses from its generation site to smooth muscle cells where it activates soluble guanylyl cyclase (sGC), producing cGMP. Subsequently, cGMP activates both cGMP- and cAMP-dependent protein kinases [cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA), respectively], leading to smooth muscle relaxation. In endothelial cells, eNOS has been localized to caveolae, small invaginations of the plasma membrane rich in cholesterol.

View Article and Find Full Text PDF

Unilateral chorda tympani (CT) nerve section and maintenance on a sodium-restricted diet leads to a rapid decrease in neurophysiological taste responses to sodium in the contralateral, intact CT nerve. Up-regulation of immune function with lipopolysaccharide (LPS; 100 microg i.p.

View Article and Find Full Text PDF

Dietary sodium restriction combined with unilateral chorda tympani nerve section leads to a rapid and specific decrease in neurophysiological taste responses to sodium in the contralateral, intact chorda tympani (Hill and Phillips [1994] J. Neurosci. 14:2904-2910).

View Article and Find Full Text PDF

Unilateral chorda tympani nerve (CT) section combined with dietary sodium restriction leads to striking alterations in sodium taste function. The regenerated rat CT exhibits deficits in sodium sensitivity, and surprisingly, there are also functional alterations in the intact, contralateral nerve. The studies presented here describe the functional "sensitive periods" for these aberrations and the number of taste buds present during corresponding stages.

View Article and Find Full Text PDF