Publications by authors named "Lynne Van Herwerden"

Flake and shark samples were purchased from outlets in several coastal Australian regions and genetically barcoded using the cytochrome oxidase subunit 1 (CO1) gene to investigate labelling reliability and species-specific sources of ambiguously labelled fillets. Of the 41 shark fillet samples obtained, 23 yielded high-quality CO1 sequences, out of which 57% (n = 13) were labelled ambiguously (misleading) and 35% (n = 8) incorrectly. In contrast, barramundi fillets, which are widely available and sought after in Australian markets, were shown to be accurately labelled.

View Article and Find Full Text PDF

The El Niño Southern Oscillation (ENSO) is the strongest source of interannual global climate variability, and extreme ENSO events are projected to increase in frequency under climate change. Interannual variability in the Coral Sea circulation has been associated with ENSO, although uncertainty remains regarding ENSO's influence on hydrodynamics and larval dispersal in the adjacent Great Barrier Reef (GBR). We investigated larval connectivity during ENSO events from 2010 to 2017 throughout the GBR, based on biophysical modelling of a widespread predatory reef fish, Lutjanus carponotatus.

View Article and Find Full Text PDF

Plastic pollution in our oceans is of growing concern particularly due to the presence of toxic additives, such as plasticisers. Therefore, this work aims to develop a comprehensive understanding of the leaching properties of plasticisers from microplastics. This work investigates the leaching of phthalate acid ester (dioctyl terephthalate (DEHT) and diethylhexyl phthalate (DEHP)) and diphenol (bisphenol A (BPA) and bisphenol S (BPS)) plasticisers from polystyrene (PS) microplastics (mean diameter = 136 μm to 1.

View Article and Find Full Text PDF

A criteria-guided workflow was applied to assess the effectiveness of microplastic separation methods on complex marine biological matrices. Efficacy of four methods (nitric acid, HNO, and potassium hydroxide, KOH, digestions, and sodium chloride, NaCl, and potassium iodide, KI, density flotations) was evaluated on four taxa (hard coral, sponge, sea squirt, sea cucumber) using five microplastics (polyethylene, polystyrene, polyethylene terephthalate, PET, polyvinylchloride, rayon). Matrix clarification was only unacceptably low for KOH.

View Article and Find Full Text PDF

Hybridization and introgression are evolutionarily significant phenomena breaking down species boundaries. "Hybrid zones" (regions of species overlap and hybridization) enable quantification of hybridization frequency and examination of mechanisms driving and maintaining gene flow. The hybrid anemonefish is found where parent species () distributions overlap.

View Article and Find Full Text PDF

Background: Understanding the factors shaping population genetic structure is important for evolutionary considerations as well as for management and conservation. While studies have revealed the importance of palaeogeographic changes in shaping phylogeographic patterns in multiple marine fauna, the role of reproductive behaviour is rarely considered in reef fishes. We investigated the population genetics of three commercially important aggregating grouper species in the Indo-West Pacific, namely the camouflage grouper Epinephelus polyphekadion, the squaretail coral grouper Plectropomus areolatus, and the common coral trout P.

View Article and Find Full Text PDF

A solid understanding of the spatial ecology of green turtles () is fundamental to their effective conservation. Yet this species, like many marine migratory species, is challenging to monitor and manage because they utilise a variety of habitats that span wide spatio-temporal scales. To further elucidate the connectivity between green turtle rookeries and foraging populations, we sequenced the mtDNA control region of 278 turtles across three foraging sites from the northern Great Barrier Reef (GBR) spanning more than 330 km: Cockle Bay, Green Island and Low Isles.

View Article and Find Full Text PDF

The application of genome-wide cytonuclear molecular data to identify management and adaptive units at various spatio-temporal levels is particularly important for overharvested large predatory organisms, often characterized by smaller, localized populations. Despite being "near threatened", current understanding of habitat use and population structure of Carcharhinus galapagensis is limited to specific areas within its distribution. We evaluated population structure and connectivity across the Pacific Ocean using genome-wide single-nucleotide polymorphisms (~7200 SNPs) and mitochondrial control region sequences (945 bp) for 229 individuals.

View Article and Find Full Text PDF

Large amounts of plastic end up in the oceans every year where they fragment into microplastics over time. During this process, microplastics and their associated plasticizers become available for ingestion by different organisms. This study assessed the effects of microplastics (Polyethylene terephthalate; PET) and one plasticizer (Di(2-ethylhexyl)phthalate; DEHP) on mortality, productivity, population sizes and gene expression of the calanoid copepod Parvocalanus crassirostris.

View Article and Find Full Text PDF

Hybridisation can produce evolutionary novelty by increasing fitness and adaptive capacity. Heterosis, or hybrid vigour, has been documented in many plant and animal taxa, and is a notable consequence of hybridisation that has been exploited for decades in agriculture and aquaculture. On the contrary, loss of fitness in naturally occurring hybrid taxa has been observed in many cases.

View Article and Find Full Text PDF

Groupers (family Epinephelidae) are a clade of species-rich, biologically diverse reef fishes. Given their ecological variability and widespread distribution across ocean basins, it is important to scrutinize their evolutionary history that underlies present day distributions. This study investigated the patterns and processes by which grouper biodiversity has been generated and what factors have influenced their present day distributions.

View Article and Find Full Text PDF

Christmas Island is located at the overlap of the Indian and Pacific Ocean marine provinces and is a hot spot for marine hybridization. Here, we evaluate the ecological framework and genetic consequences of hybridization between butterflyfishes Chaetodon guttatissimus and Chaetodon punctatofasciatus. Further, we compare our current findings to those from a previous study of hybridization between Chaetodon trifasciatus and Chaetodon lunulatus.

View Article and Find Full Text PDF

The otx2 gene encodes a transcription factor (OTX2) essential in the formation of the brain and sensory systems. Specifically, OTX2-positive cells are associated with axons in the olfactory system of mice and otx2 is upregulated in odour-exposed zebrafish, indicating a possible role in olfactory imprinting. In this study, otx2 was used as a candidate gene to investigate the molecular mechanisms of olfactory imprinting to settlement cues in the coral reef anemonefish, Amphiprion percula.

View Article and Find Full Text PDF

Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction.

View Article and Find Full Text PDF

The rich diversity of coral reef organisms is supported, at least in part, by the diversity of coral reef habitat. Some of the most habitat specialised fishes on coral reefs are obligate coral-dwelling gobies of the genus Gobiodon that inhabit a range of coral species, mostly of the genus Acropora. However, the role of this specialised pattern of habitat use in the evolution of coral-dwelling gobies is not well understood.

View Article and Find Full Text PDF

Much progress has been made toward understanding marine metapopulation dynamics, largely because of multilocus microsatellite surveys able to connect related individuals within the metapopulation. However, most studies are focused on small spatial scales, tens of kilometers, while demographic exchange at larger spatial scales remains poorly documented. Additionally, many small-scale demographic studies conflict with broad-scale phylogeographic patterns concerning levels of marine population connectivity, highlighting a need for data on more intermediate scales.

View Article and Find Full Text PDF

Marine protected areas (MPAs) are increasingly being advocated and implemented to protect biodiversity on coral reefs. Networks of appropriately sized and spaced reserves can capture a high proportion of species diversity, with gene flow among reserves presumed to promote long term resilience of populations to spatially variable threats. However, numerically rare small range species distributed among isolated locations appear to be at particular risk of extinction and the likely benefits of MPA networks are uncertain.

View Article and Find Full Text PDF

Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef.

View Article and Find Full Text PDF

Natural hybridization is widespread among coral reef fishes. However, the ecological promoters and evolutionary consequences of reef fish hybridization have not been thoroughly evaluated. Butterflyfishes form a high number of hybrids and represent an appropriate group to investigate hybridization in reef fishes.

View Article and Find Full Text PDF

We examined how peripherally isolated endemic species may have contributed to the biodiversity of the Indo-Australian Archipelago biodiversity hotspot by reconstructing the evolutionary history of the wrasse genus Anampses. We identified three alternate models of diversification: the vicariance-based 'successive division' model, and the dispersal-based 'successive colonisation' and 'peripheral budding' models. The genus was well suited for this study given its relatively high proportion (42%) of endemic species, its reasonably low diversity (12 species), which permitted complete taxon sampling, and its widespread tropical Indo-Pacific distribution.

View Article and Find Full Text PDF

Background: The Coral Triangle (CT), bounded by the Philippines, the Malay Peninsula, and New Guinea, is the epicenter of marine biodiversity. Hypotheses that explain the source of this rich biodiversity include 1) the center of origin, 2) the center of accumulation, and 3) the region of overlap. Here we contribute to the debate with a phylogeographic survey of a widely distributed reef fish, the Peacock Grouper (Cephalopholis argus; Epinephelidae) at 21 locations (N = 550) using DNA sequence data from mtDNA cytochrome b and two nuclear introns (gonadotropin-releasing hormone and S7 ribosomal protein).

View Article and Find Full Text PDF

The diversity of geographic scales at which marine organisms display genetic variation mirrors the biophysical and ecological complexity of dispersal by pelagic larvae. Yet little is known about the effect of larval ecology on genetic population patterns, partly because detailed data of larval ecology do not yet exist for most taxa. One species for which this data is available is Eleutheronema tetradactylum, a tropical Indo-West Pacific shorefish.

View Article and Find Full Text PDF

Background: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.

Methodology/principal Findings: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci.

View Article and Find Full Text PDF

The characterization of candidate loci is a critical step in obtaining insight into adaptation and acclimation of organisms. In this study of two non-model tropical (to sub-tropical) congeneric perciformes (Lates calcarifer and Lates niloticus) we characterized both coding and non-coding regions of lactate dehydrogenase-B (ldh-b), a locus which exhibits temperature-adaptive differences among temperate and sub-tropical populations of the North American killifish Fundulus heteroclitus. Ldh-b was 5,004 and 3,527 bp in length in L.

View Article and Find Full Text PDF

Lactate dehydrogenase-B (ldh-b) encodes a metabolic enzyme (LDH-B) which plays an important role in maintaining aerobic performance and in thermal acclimation and/or adaptation of fish. As the first step in understanding the effect this enzyme has on the ability of tropical coral reef fishes to cope with thermal stress, we characterized both coding and non-coding regions of ldh-b in two congeneric perciformes, Plectropomus leopardus and Plectropomus laevis. Ldh-b was 4666 and 4539bp in length in P.

View Article and Find Full Text PDF