Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations.
View Article and Find Full Text PDFAgeing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity.
View Article and Find Full Text PDFBone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes.
View Article and Find Full Text PDFAcute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death.
View Article and Find Full Text PDFCellular senescence is a state of irreversible cell proliferation arrest induced by various stressors including telomere attrition, DNA damage, and oncogene induction. While beneficial as an acute response to stress, the accumulation of senescent cells with increasing age is thought to contribute adversely to the development of cancer and a number of other age-related diseases, including neurodegenerative diseases for which there are currently no effective disease-modifying therapies. Non-cell-autonomous effects of senescent cells have been suggested to arise through the SASP, a wide variety of proinflammatory cytokines, chemokines, and exosomes secreted by senescent cells.
View Article and Find Full Text PDFAgeing, and particularly the onset of age-related diseases, is associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Polyphenolic natural products such as stilbenoids, flavonoids and chalcones have been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis and cellular senescence, both in vitro and in vivo. Here we aim to identify the structural basis underlying the pharmacology of polyphenols towards ROS and related biochemical pathways involved in age-related disease.
View Article and Find Full Text PDFIn the original publication of the article, Fig. 2 was published incorrectly. The corrected Figure is given below.
View Article and Find Full Text PDFCellular senescence has been shown to be sufficient for the development of multiple age-related pathologies. Senescent cells adopt a secretory phenotype (the SASP) which comprises a large number of pro-inflammatory cytokines, chemokines and proteases. The SASP itself is thought to be causative in many pathologies of age-related diseases, and there is growing interest in developing seno-modifying agents that can suppress the SASP.
View Article and Find Full Text PDFCell senescence, a state of cell cycle arrest and altered metabolism with enhanced pro-inflammatory secretion, underlies at least some aspects of organismal ageing. The sirtuin family of deacetylases has been implicated in preventing premature ageing; sirtuin overexpression or resveratrol-mediated activation of sirtuins increase longevity. Here we show that sirtuin inhibition by short-term, low-dose treatment with the experimental anti-cancer agent Tenovin-6 (TnV6) induces cellular senescence in primary human fibroblasts.
View Article and Find Full Text PDFChronological age represents the greatest risk factor for many life-threatening diseases, including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility to infectious disease. Current efforts to tackle individual diseases may have little impact on the overall healthspan of older individuals, who would still be vulnerable to other age-related pathologies. However, recent progress in ageing research has highlighted the accumulation of senescent cells with chronological age as a probable underlying cause of pathological ageing.
View Article and Find Full Text PDFBackground: Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque.
View Article and Find Full Text PDFAberrant placental ageing is implicated in a high percentage of birth complications, stillbirths and neonatal deaths. Understanding how this complex organ is established and maintained for the 9-10 months of pregnancy and then how and why it undergoes the physiological changes that result in labour at term is therefore of enormous clinical importance. In this review, we assess the evidence that placental ageing results from cellular senescence, a state of terminal proliferation arrest accompanied by characteristic morphological and metabolic changes including a shift to a pro-inflammatory phenotype.
View Article and Find Full Text PDFHuman ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms.
View Article and Find Full Text PDFAging (Albany NY)
February 2016
Cellular senescence, a state of essentially irreversible proliferation arrest, serves as a potent tumour suppressor mechanism. However, accumulation of senescent cells with chronological age is likely to contribute to loss of tissue and organ function and organismal aging. A crucial biochemical modulator of aging is mTOR; here, we have addressed the question of whether acute mTORC inhibition in near-senescent cells can modify phenotypes of senescence.
View Article and Find Full Text PDFSenescent cells show an altered secretome profile termed the senescence-associated secretory phenotype (SASP). There is an increasing body of evidence that suggests that the accumulation of SASP-positive senescent cells in humans is partially causal in the observed shift to a low-level pro-inflammatory state in aged individuals. This in turn suggests the SASP as a possible therapeutic target to ameliorate inflammatory conditions in the elderly, and thus a better understanding of the signalling pathways underlying the SASP are required.
View Article and Find Full Text PDFWRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction.
View Article and Find Full Text PDFWerner syndrome (WS) is a rare late-onset premature ageing disease showing many of the phenotypes associated with normal ageing, and provides one of the best models for investigating cellular pathways that lead to normal ageing. WS is caused by mutation of WRN, which encodes a multifunctional DNA replication and repair helicase/exonuclease. To investigate the role of WRN protein's unique exonuclease domain, we have recently identified DmWRNexo, the fly orthologue of the exonuclease domain of human WRN.
View Article and Find Full Text PDFExonucleases are key enzymes involved in many aspects of cellular metabolism and maintenance and are essential to genome stability, acting to cleave DNA from free ends. Exonucleases can act as proof-readers during DNA polymerisation in DNA replication, to remove unusual DNA structures that arise from problems with DNA replication fork progression, and they can be directly involved in repairing damaged DNA. Several exonucleases have been recently discovered, with potentially critical roles in genome stability and ageing.
View Article and Find Full Text PDFWRN is a RecQ helicase with an associated exonuclease activity important in DNA metabolism, including DNA replication, repair and recombination. In humans, deficiencies in WRN function cause the segmental progeroid Werner syndrome (WS), in which patients show premature onset of many hallmarks of normal human ageing. At the cellular level, WRN loss results in rapid replicative senescence, chromosomal instability and sensitivity to various DNA damaging agents including the topoisomerase inhibitor, camptothecin (CPT).
View Article and Find Full Text PDF