Publications by authors named "Lynne Ramage"

Objective: Outcomes are poor for patients with congenital adrenal hyperplasia (CAH), in part due to the supraphysiological glucocorticoid doses required to control adrenal androgen excess. Hydrocortisone (ie, cortisol) is the recommended glucocorticoid for treatment of CAH. However, the other endogenous glucocorticoid in humans, corticosterone, is actively transported out of metabolic tissues such as adipose tissue and muscle, so we hypothesized that corticosterone could control adrenal androgens while causing fewer metabolic adverse effects than hydrocortisone.

View Article and Find Full Text PDF

Objective: Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease.

View Article and Find Full Text PDF

Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness.

View Article and Find Full Text PDF

Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by xenon washout.

View Article and Find Full Text PDF

Background And Aims: The effects of glucocorticoids on fuel metabolism are complex. Acute glucocorticoid excess promotes lipolysis but chronic glucocorticoid excess causes visceral fat accumulation. We hypothesized that interactions between cortisol and insulin and adrenaline account for these conflicting results.

View Article and Find Full Text PDF

The discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans.

View Article and Find Full Text PDF

The discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic 'lean' mouse model, which has been selected for low adiposity over 60 generations, to identify mitochondrial thiosulfate sulfurtransferase (Tst; also known as rhodanese) as a candidate obesity-resistance gene with selectively increased expression in adipocytes. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains.

View Article and Find Full Text PDF

Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1(tg/+) mice).

View Article and Find Full Text PDF

Type 2 diabetes ultimately results from pancreatic β-cell failure. Abnormally elevated intracellular regeneration of glucocorticoids by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in fat or liver may underlie pathophysiological aspects of the metabolic syndrome. Elevated 11β-HSD1 is also found in pancreatic islets of obese/diabetic rodents and is hypothesized to suppress insulin secretion and promote diabetes.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain.

View Article and Find Full Text PDF

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels.

View Article and Find Full Text PDF

Objective: The study objective was to determine the key early mechanisms underlying the beneficial redistribution, function, and inflammatory profile of adipose tissue in 11β-hydroxysteroid dehydrogenase type 1 knockout (11β-HSD1(-/-)) mice fed a high-fat (HF) diet.

Research Design And Methods: By focusing on the earliest divergence in visceral adiposity, subcutaneous and visceral fat depots from 11β-HSD1(-/-) and C57Bl/6J control mice fed an HF diet for 4 weeks were used for comparative microarray analysis of gene expression, and differences were validated with real-time PCR. Key changes in metabolic signaling pathways were confirmed using Western blotting/immunoprecipitation, and fat cell size was compared with the respective chow-fed control groups.

View Article and Find Full Text PDF

Despite major advances in understanding monogenic causes of morbid obesity, the complex genetic and environmental etiology of idiopathic metabolic syndrome remains poorly understood. One hypothesis suggests that similarities between the metabolic disease of plasma glucocorticoid excess (Cushing's syndrome) and idiopathic metabolic syndrome results from increased glucocorticoid reamplification within adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1). Indeed, 11beta-HSD-1 is now a major therapeutic target.

View Article and Find Full Text PDF

Local glucocorticoid (GC) action depends on intracellular GC metabolism by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). 11betaHSD1 activates GCs, while 11betaHSD2 inactivates GCs. Adipocyte-specific amplification of GCs through transgenic overexpression of 11betaHSD1 produces visceral obesity and the metabolic syndrome in mice.

View Article and Find Full Text PDF

The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) amplifies intracellular glucocorticoid action in vivo. 11beta-HSD-1 activity is increased in adipose tissues of obese humans and genetically obese rodents, providing a mechanistic basis for the similarities between metabolic disease arising from high circulating glucocorticoids (Cushing's syndrome) and idiopathic obesity/metabolic syndrome where plasma glucocorticoids are typically unaltered. Fat-specific overexpression of 11beta-HSD-1 produces a metabolic syndrome in mice, whereas 11beta-HSD-1 null mice resist high-fat diet (HF)-induced visceral obesity and its metabolic consequences.

View Article and Find Full Text PDF

Apoptosis is an important route to neuronal death in experimental models of stroke, the leading neurological cause of death and disability. Here we explore a role for ataxia telangiectasia mutated protein (ATM), an activator of p53, in a primary cortical culture model of stroke. NMDA-induced apoptosis was reduced in cultures derived from mice with targeted deletions in the ATM gene.

View Article and Find Full Text PDF