Publications by authors named "Lynne Ling"

Tinnitus is known to affect 10-15 % of the population, severely impacting 1-2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes.

View Article and Find Full Text PDF

Tinnitus impacts between 10-20% of the population. Individuals most troubled by their tinnitus have their attention bound to and are distracted by, their tinnitus percept. While numerous treatments to ameliorate tinnitus have been tried, no therapeutic approach has been clinically accepted.

View Article and Find Full Text PDF

Tinnitus affects roughly 15%-20% of the population while severely impacting 10% of those afflicted. Tinnitus pathology is multifactorial, generally initiated by damage to the auditory periphery, resulting in a cascade of maladaptive plastic changes at multiple levels of the central auditory neuraxis as well as limbic and non-auditory cortical centres. Using a well-established condition-suppression model of tinnitus, we measured tinnitus-related changes in the microcircuits of excitatory/inhibitory neurons onto layer 5 pyramidal neurons (PNs), as well as changes in the excitability of vasoactive intestinal peptide (VIP) neurons in primary auditory cortex (A1).

View Article and Find Full Text PDF

Ageing and challenging signal-in-noise conditions are known to engage the use of cortical resources to help maintain speech understanding. Extensive corticothalamic projections are thought to provide attentional, mnemonic and cognitive-related inputs in support of sensory inferior colliculus (IC) inputs to the medial geniculate body (MGB). Here we show that a decrease in modulation depth, a temporally less distinct periodic acoustic signal, leads to a jittered ascending temporal code, changing MGB unit responses from adapting responses to responses showing repetition enhancement, posited to aid identification of important communication and environmental sounds.

View Article and Find Full Text PDF

The presence of novel or degraded communication sounds likely results in activation of basal forebrain cholinergic neurons increasing release of ACh onto presynaptic and postsynaptic nAChRs in primary auditory cortex (A1). nAChR subtypes include high-affinity heteromeric nAChRs commonly composed of α4 and β2 subunits and low-affinity homomeric nAChRs composed of α7 subunits. In young male FBN rats, we detail the following: (1) the distribution/expression of nAChR subunit transcripts in excitatory (VGluT1) and inhibitory (VGAT) neurons across A1 layers; (2) heteromeric nAChR binding across A1 layers; and (3) nAChR excitability in A1 layer (L) 5 cells.

View Article and Find Full Text PDF

Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood.

View Article and Find Full Text PDF

Key Points: Neuronal nicotinic acetylcholine receptors (nAChRs) play a fundamental role in the attentional circuitry throughout the mammalian CNS. In the present study, we report a novel finding that ageing negatively impacts nAChR efficacy in auditory thalamus, and this is probably the result of a loss of nAChR density (B ) and changes in the subunit composition of nAChRs. Our data support the hypothesis that age-related maladaptive changes involving nAChRs within thalamocortical circuits partially underpin the difficulty that elderly adults experience with respect to attending to speech and other salient acoustic signals.

View Article and Find Full Text PDF

Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs.

View Article and Find Full Text PDF

Gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, THIP), a GABA receptor δ-subunit specific agonist, when present at low (μM) concentrations, preferentially binds and activates extrasynaptic (non-γ2, δ-subunit-containing) GABARs (Storustovu and Ebert, 2006; Richardson ., 2011, 2013). In this prototype saturation binding experiment, a series of concentrations of [H]gaboxadol (5, 10, 25, 50, 75, 100, 250 and 400 nM) will be used.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches.

View Article and Find Full Text PDF

Age-related deficits in detecting and understanding speech, which can lead to social withdrawal and isolation, have been linked to changes in the central auditory system. Many of these central age-related changes involve altered mechanisms of inhibitory neurotransmission, essential for accurate and reliable auditory processing. In sensory thalamus, GABA mediates fast (phasic) inhibition via synaptic GABA(A) receptors (GABA(A)Rs) and long-lasting (tonic) inhibition via high-affinity (extrasynaptic) GABA(A)Rs, which provide a majority of the overall inhibitory tone in sensory thalamus.

View Article and Find Full Text PDF

Auditory cortex (AI) shows age-related decreases in pre-synaptic markers for gamma-aminobutyric acid (GABA) and degraded AI neuronal response properties. Previous studies find age-related increases in spontaneous and driven activity, decreased spectral and directional sensitivity, and impaired novelty detection. The present study examined expression of GABA(A) receptor (GABA(A)R) subunit message, protein, and quantitative GABA(A)R binding in young, middle-aged, and aged rat AI, with comparisons with adjoining parietal cortex.

View Article and Find Full Text PDF

Tinnitus perception depends on the presence of its neural correlates within the auditory neuraxis and associated structures. Targeting specific circuits and receptors within the central nervous system in an effort to relieve the perception of tinnitus and its impact on one's emotional and mental state has become a focus of tinnitus research. One approach is to upregulate endogenous inhibitory neurotransmitter levels (e.

View Article and Find Full Text PDF

Background: Neural inhibition plays an important role in auditory processing and attentional gating. Extrasynaptic GABA(A) receptors (GABA(A)R), containing α(4)and δ GABA(A)R subunits, are thought to be activated by GABA spillover outside of the synapse following release resulting in a tonic inhibitory Cl(-) current which could account for up to 90% of total inhibition in visual and somatosensory thalamus. However, the presence of this unique type of inhibition has not been identified in auditory thalamus.

View Article and Find Full Text PDF

Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent.

View Article and Find Full Text PDF