Publications by authors named "Lynne Larochelle Richard"

Replacing scarce and expensive platinum (Pt) with metal-nitrogen-carbon (M-N-C) catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has largely been impeded by the low oxygen reduction reaction activity of M-N-C due to low active site density and site utilization. Herein, we overcome these limits by implementing chemical vapour deposition to synthesize Fe-N-C by flowing iron chloride vapour over a Zn-N-C substrate at 750 °C, leading to high-temperature trans-metalation of Zn-N sites into Fe-N sites. Characterization by multiple techniques shows that all Fe-N sites formed via this approach are gas-phase and electrochemically accessible.

View Article and Find Full Text PDF

Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap obscures the connections between the input precursors and the output products, clouding the pathway toward Fe-N-C catalyst improvement. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single-atom Fe(II)-N sites via in-temperature X-ray absorption spectroscopy.

View Article and Find Full Text PDF