Publications by authors named "Lynne I Denny"

Article Synopsis
  • Respiratory syncytial virus (RSV) is a major cause of severe lung infections globally, and developing an effective vaccine has been challenging, although recent advancements in vaccine technology bring hope for success.
  • The new RSV vaccine V171 combines lipid nanoparticles and mRNA encoding an engineered version of the RSV F protein, which is designed to prompt robust immune responses within cells.
  • Preclinical and Phase I trial results indicate that the mRNA vaccine is promising, and a new cell-based potency assay has been created to support its further clinical development by accurately measuring its effectiveness against a reference standard.
View Article and Find Full Text PDF

Histamine H3 receptor antagonists are being developed to treat a variety of neurological and cognitive disorders that may be ameliorated by enhancement of central neurotransmitter release. Here, we present the in vitro pharmacological and in vivo pharmacokinetic profiles for the nonimidazole, benzofuran ligand ABT-239 [4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile] and compare it with several previously described imidazole and nonimidazole H3 receptor antagonists. ABT-239 binds to recombinant human and rat H3 receptors with high affinity, with pK(i) values of 9.

View Article and Find Full Text PDF

Histamine H3 receptors regulate the release of a variety of central neurotransmitters involved in cognitive processes. A-349821 ((4'-(3-((R,R)2,5-dimethyl-pyrrolidin-1-yl)-propoxy)-biphenyl-4-yl)-morpholin-4-yl-methanone) is a novel, non-imidazole H3 receptor ligand, displaying high affinity for recombinant rat and human H3 receptors, with pKi values of 9.4 and 8.

View Article and Find Full Text PDF

Histamine H3 receptor (H3R) antagonists enhance neurotransmitter release and are being developed for the treatment of a variety of neurological and cognitive disorders. Many potent histamine H3R antagonists contain an imidazole moiety that limits receptor selectivity and the tolerability of this class of compounds. Here we present the in vitro pharmacological data for two novel piperazine amide ligands, A-304121 [4-(3-((2R)-2-aminopropanoyl-1-piperazinyl)propoxy)phenyl)cyclopropylmethanone] and A-317920 [N-((1R)-2-(4-(3-(4-(cyclopropylcarbonyl)phenoxy)propyl)-1-piperazinyl)-1-methyl-2-oxo-ethyl-)-2-furamide], and compare them with the imidazole H3R antagonists ciproxifan, clobenpropit, and thioperamide.

View Article and Find Full Text PDF