Publications by authors named "Lynn Verstrepen"

Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon).

View Article and Find Full Text PDF

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs.

View Article and Find Full Text PDF

NUTRIOSE (Roquette, Lestrem, France) is a resistant dextrin with well-established prebiotic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE on host immune response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a Colon-on-a-plate system (ProDigest, Ghent, Belgium) with or without NUTRIOSE supplementation.

View Article and Find Full Text PDF

Single-cell protein from torula yeast () grown on lignocellulosic biomass has been proven to be an excellent alternative protein source for animal feed. This study aimed to evaluate the amino acid (AA) digestibility by estimating intestinal absorption from three yeast-based ingredients, produced by cultivating on hydrolysate, using either mixed woody species (drum- (WDI) or spray-dried (WSI)) or corn dextrose (drum-dried (DDI)) as the carbon source. Further, the protective effect of intestinal digests on activated THP1-Blue™-induced epithelial damage and cytokine profile was evaluated.

View Article and Find Full Text PDF

The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health.

View Article and Find Full Text PDF

Proton pump inhibitors (PPIs) are commonly prescribed medications associated with changes in the gut microbiome and dysbiosis when used long-term. Probiotics, such as Enterogermina (containing four strains of ) reduce side effects from triple therapy with PPI+antibiotics. We aim to assess the ability of this probiotic in preventing and/or treating the dysbiosis induced by PPI use.

View Article and Find Full Text PDF

The traditional Chinese medicine (TCM)-Chaihu Shugan Formula (CSF), consisting of several Chinese botanical drugs like Bupleurum, is derived from the ancient Chinese pharmacopeia. It has been used for more than thousands of years in various suboptimal health statuses and diseases induced by chronic stress based on empirical therapy. Recent studies confirm the role of CSF in the development of many diseases, including depression, stress-induced hepatic injury and tumors.

View Article and Find Full Text PDF

We report here the potential role of a 4-strain probiotic suspension for use with patients with Parkinson's disease (PD). Stool samples from a group of three patients with diagnosed PD were used to create microbiotas in an gut model. The effects of dosing with an oral probiotic suspension (Symprove) on bacterial composition and metabolic activity in the microbiotas was evaluated over 48 h and compared with healthy controls.

View Article and Find Full Text PDF

Fermentation is an ancient food preservation process, and fermented products have been traditionally consumed in different cultures worldwide over the years. The interplay between human gut microbiota, diet and host health is widely recognized. Diet is one of the main factors modulating gut microbiota potentially with beneficial effects on human health.

View Article and Find Full Text PDF

The human gut microbiota has been linked to the health status of the host. Modulation of human gut microbiota through pro- and prebiotic interventions has yielded promising results; however, the effect of novel prebiotics, such as chitin-glucan, on gut microbiota-host interplay is still not fully characterized. We assessed the effect of chitin-glucan (CG) and chitin-glucan plus (CGB) on human gut microbiota from the luminal and mucosal environments in vitro.

View Article and Find Full Text PDF

While many beneficial host-microbiota interactions have been described, imbalanced microbiota in the gut is speculated to contribute to the progression and recurrence of chronic inflammatory diseases such as Crohn's disease (CD). This in vitro study evaluated the impact of a cranberry concentrate Type M (CTM) on adherent-invasive (AIEC) LF82, a pathobiont associated with CD. Different stages of pathogenic infection were investigated: (i) colonization of the mucus layer, and (ii) adhesion to and (iii) invasion of the epithelial cells.

View Article and Find Full Text PDF

While a large set of in vitro models are available to study the effects of specific food ingredients (e.g. pre- and probiotics) on the human gut microbiome, the availability of such models for companion animals is limited.

View Article and Find Full Text PDF

Symprove, a multi-strain probiotic, has been shown to exert a mild anti-inflammatory effect in patients with ulcerative colitis (UC). We examined stool samples from 3 patients with UC in order to create microbiotas in an in-vitro gut model. The effects of Symprove on bacterial diversity and metabolic activity in the microbiotas was evaluated over 48 h.

View Article and Find Full Text PDF

Modulation of the gut microbiome as a means to improve human health has recently gained increasing interest. In this study, it was investigated whether cRG-I, a carrot-derived pectic polysaccharide, enriched in rhamnogalacturonan-I (RG-I) classifies as a potential prebiotic ingredient using novel in vitro models. First, digestion methods involving α-amylase/brush border enzymes demonstrated the non-digestibility of cRG-I by host-derived enzymes versus digestible (starch/maltose) and non-digestible controls (inulin).

View Article and Find Full Text PDF

Nontyphoidal strains continue to be a major cause of foodborne illness globally. One intriguing approach to reducing the risk of salmonellosis is the direct ingestion of phages targeting to enhance natural gut resilience and provide protection during foodborne disease outbreaks. We evaluated the ability of a prophylactically administered bacteriophage cocktail, the foodborne outbreak pill (FOP) targeting O157:H7, and to resolve a infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME), a simulated gut platform populated by the human intestinal microbiome of healthy donors.

View Article and Find Full Text PDF

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an intracellular cysteine protease (paracaspase) that plays an integral role in innate and adaptive immunity. The phenothiazine mepazine has been shown to inhibit the proteolytic activity of MALT1 and is frequently used to study its biological role. MALT1 has recently been suggested as a therapeutic target in rheumatoid arthritis.

View Article and Find Full Text PDF

Colwellia psychrerythraea 34H is a Gram-negative cold-adapted microorganism that adopts many strategies to cope with the limitations associated with the low temperatures of its habitat. In this study, we report the complete characterization of the lipid A moiety from the lipopolysaccharide of Colwellia. Lipid A and its partially deacylated derivative were completely characterized by high-resolution mass spectrometry, NMR spectroscopy, and chemical analysis.

View Article and Find Full Text PDF

Tumor Necrosis Factor (TNF) is a potent inflammatory cytokine that exerts its functions through the activation of two distinct receptors, TNFR1 and TNFR2. Both receptors can activate canonical NF-κB and JNK MAP kinase signaling, while TNFR2 can also activate non-canonical NF-κB signaling, leading to numerous changes in gene expression that drive inflammation, cell proliferation and cell survival. On the other hand, TNFR1 also activates signaling pathways leading to cell death by either apoptosis or necroptosis, depending on the cellular context.

View Article and Find Full Text PDF

Many signaling pathways leading to activation of transcription factors and gene expression are characterized by phosphorylation events mediated by specific kinases. The transcription factor NF-κB plays a key role in multiple cellular processes, including immune signaling, inflammation, development, proliferation and survival. Dysregulated NF-κB activation is associated with autoimmunity, chronic inflammation and cancer.

View Article and Find Full Text PDF

The family of A20-Binding Inhibitors of NF-kappaB (ABINs) consists of three proteins, ABIN-1, ABIN-2 and ABIN-3, which were originally identified as A20-binding proteins and inhibitors of cytokines and Lipopolysaccharide (LPS) induced NF-kappaB activation. ABIN family members have limited sequence homology in a number of short regions that mediate A20-binding, ubiquitin-binding, and NF-kappaB inhibition. The functional role of A20 binding to ABINs remains unclear, although an adaptor function has been suggested.

View Article and Find Full Text PDF

The innate immune system forms our first line of defense against invading pathogens and relies for a major part on the activation of two transcription factors, NF-κB and IRF3. Signaling pathways that activate these transcription factors are intertwined at the level of the canonical IκB kinases (IKKα, IKKβ) and non-canonical IKK-related kinases (IKKε, TBK1). Recently, significant progress has been made in understanding the function and mechanism of action of IKKε in immune signaling.

View Article and Find Full Text PDF

Linear polyubiquitination of proteins has recently been implicated in NF-κB signalling and is mediated by the linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP and Sharpin. However, the mechanisms that regulate linear ubiquitination are still unknown. Here, we show that A20 is rapidly recruited to NEMO and LUBAC upon TNF stimulation and that A20 inhibits LUBAC-induced NF-κB activation via its C-terminal zinc-finger 7 (ZF7) domain.

View Article and Find Full Text PDF

Unanchored chains of ubiquitin have recently been proposed to play a role in signaling. In this issue of Immunity, Jiang et al. (2012) demonstrate that binding of free polyubiquitin to the viral RNA sensors RIG-I and MDA5 leads to their oligomerization and activation.

View Article and Find Full Text PDF

Despite its small size, ubiquitin is one of the most versatile signaling molecules in the cell and affects distinct cellular processes. It forms the building block of a repertoire of posttranslational modifications of cellular proteins, ranging from the attachment of a single ubiquitin to ubiquitin chains of different linkage. Proteins that contain ubiquitin chain-specific ubiquitin-binding domains recognize different types of ubiquitination and determine the mode of signaling of modified proteins.

View Article and Find Full Text PDF

The innate immune system senses and protects against invading microorganisms and endogenous danger signals by triggering inflammatory and antimicrobial responses. However, dysregulation of these pathways, which involve the transcription factors nuclear factor-κB (NF-κB) and interferon regulatory factor (IRF) 3, can lead to severe inflammatory diseases. Tax1-binding protein 1 (TAX1BP1) plays a key role in the negative regulation of NF-κB and IRF3 signaling by acting in concert with the ubiquitin-editing enzyme A20.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr9m7d43bdq4fdqihh5hvu5mpfa6tmvav): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once