The objective of this study was to develop and evaluate new TaqMan real-time reverse transcription-PCR (rRT-PCR) assays by the use of the minor groove binding probe to detect a wide range of equine influenza virus (EIV) strains comprising both subtypes of the virus (H3N8 and H7N7). A total of eight rRT-PCR assays were developed, targeting the nucleoprotein (NP), matrix (M), and hemagglutinin (HA) genes of the two EIV subtypes. None of the eight assays cross-reacted with any of the other known equine respiratory viruses.
View Article and Find Full Text PDFPhylogenetic and antigenic analyses indicate that recent circulating equine-2 influenza viruses in the United States have been alternating between two genetic and antigenic distinct lineages since 1996. The evolution rates for these two lineages, the Kentucky and the Florida lineage, are very similar. For the earlier isolates in the Kentucky lineage, there are multiple and sequential nonsynonymous substitutions at antigenic sites B and D.
View Article and Find Full Text PDFEquine influenza virus (EIV) is the leading cause of acute respiratory infection in horses worldwide. In recent years, the precise mechanism by which influenza infection kills host cells is being re-evaluated. In this report, we examined whether caspases, a group of intracellular proteases, are activated following EIV infection and contribute to EIV-mediated cell death.
View Article and Find Full Text PDF