It is difficult to imagine where the signaling community would be today without the Protein Data Bank. This visionary resource, established in the 1970s, has been an essential partner for sharing information between academics and industry for over 3 decades. We describe here the history of our journey with the protein kinases using cAMP-dependent protein kinase as a prototype.
View Article and Find Full Text PDFVaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.
View Article and Find Full Text PDFProtein-DNA interactions are essential for many biological processes. X-ray crystallography can provide high-resolution structures, but protein-DNA complexes are difficult to crystallize and typically contain only small DNA fragments. Thus, there is a need for computational methods that can provide useful predictions to give insights into mechanisms and guide the design of new experiments.
View Article and Find Full Text PDFX-ray crystallography provides excellent structural data on protein-DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein-DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS).
View Article and Find Full Text PDFTM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5.
View Article and Find Full Text PDFClassical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search.
View Article and Find Full Text PDFIdentifying conserved pockets on the surfaces of a family of proteins can provide insight into conserved geometric features and sites of protein-protein interaction. Here we describe mapping and comparison of the surfaces of aligned crystallographic structures, using the protein kinase family as a model. Pockets are rapidly computed using two computer programs, FADE and Crevasse.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
Structures of set of serine-threonine and tyrosine kinases were investigated by the recently developed bioinformatics tool Local Spatial Patterns (LSP) alignment. We report a set of conserved motifs comprised mostly of hydrophobic residues. These residues are scattered throughout the protein sequence and thus were not previously detected by traditional methods.
View Article and Find Full Text PDFCyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1) the phosphate binding cassette (PBC), which binds the cAMP ribose-phosphate, 2) the "hinge," a flexible helix, which contacts the PBC, 3) the beta(2,3) loop, which provides precise positioning of an invariant arginine from the PBC, and 4) a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif).
View Article and Find Full Text PDFProtein kinases are a large family of enzymes heavily involved in signal transduction, regulation of metabolism, and control of cell growth and differentiation. These functions require precise recognition of widely diverse signals and substrates, and very detailed control of protein kinase activity. Large molecules interact primarily through recognition of surface features.
View Article and Find Full Text PDFThe two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIbeta isoform with the PKA catalytic (C) subunit were analyzed by amide H/(2)H exchange mass spectrometry to compare solvent accessibility of RIIbeta and the C subunit in their free and complexed states. Direct mapping of the RIIbeta-C interface revealed important differences between the intersubunit interfaces in the type I and type II holoenzyme complexes.
View Article and Find Full Text PDFProteins that undergo cooperative unfolding events display EX1 kinetic signatures in hydrogen exchange mass spectra. The hallmark bimodal isotope pattern observed for EX1 kinetics is distinct from the binomial isotope pattern for uncorrelated exchange (EX2), the normal exchange regime for folded proteins. Detection and characterization of EX1 kinetics is simple when the cooperative unit is large enough that the isotopic envelopes in the bimodal pattern are resolved in the m/z scale but become complicated in cases where the unit is small or there is a mixture of EX1 and EX2 kinetics.
View Article and Find Full Text PDFA Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein.
View Article and Find Full Text PDFGlu230, one of the acidic residues that cluster around the active site of the catalytic subunit of cAMP-dependent protein kinase, plays an important role in substrate recognition. Specifically, its side chain forms a direct salt-bridge interaction with the substrate's P-2 Arg. Previous studies showed that mutation of Glu230 to Gln (E230Q) caused significant decreases not only in substrate binding but also in the rate of phosphoryl transfer.
View Article and Find Full Text PDFThe macromolecular docking problem that must be solved for experimental biologists is prediction of the structures of complexes for which the components are known or reliably modeled in the unbound state, but the structure of the complex is unknown. The current state of the art in macromolecular docking is such that solving this problem usually requires supplementary experimental chemical and/or biological information to evaluate computational predictions. Amide (1)H/(2)H exchange measured by mass spectroscopy is a promising approach for obtaining such information, because it can reveal interfacial regions of each member of the complex and identify regions of conformational flexibility in the structure.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2005
We have formulated the Energy by Linear Superposition of Corrections Approximation (ELSCA) for estimating the electrostatic and apolar solvation energy of bringing two proteins into close proximity or into contact as defined by the linearized Poisson-Boltzmann model and a linear function of the solvent-accessible surface area. ELSCA utilizes potentials of mean force between atom types found in the AMBER ff99 force field, a uniform distance-dependent dielectric, and a potential that mimics the change in solvent accessible surface area for bringing two solvated spheres into contact. ELSCA was trained by a linear least-squares fit on more than 39 000 putative complexes, each formed from pairs of nonhomologous proteins with a range of shapes, sizes, and charges.
View Article and Find Full Text PDFcAMP-binding domains from several different proteins were analyzed to determine the properties and interactions of this recognition motif. Systematic computational analyses, including structure-based sequence comparison, surface matching, affinity grid analysis, and analyses of the ligand protein interactions were carried out. These analyses show distinctive roles of the sugar phosphate and the adenine in the cAMP-binding module.
View Article and Find Full Text PDFCyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.
View Article and Find Full Text PDFThe catalytic subunit of cAMP-dependent protein kinase has served as a paradigm for the entire kinase family. In the course of studying the structure-function relationship of the P+1 loop (Leu198-Leu205) of the kinase, we have solved the crystal structure of the Tyr204 to Ala mutant in complexes with Mg.ATP and an inhibitory peptide at 1.
View Article and Find Full Text PDFAn important goal after structural genomics is to build up the structures of higher-order protein-protein complexes from structures of the individual subunits. Often structures of higher order complexes are difficult to obtain by crystallography. We have used an alternative approach in which the structures of the individual catalytic (C) subunit and RIalpha regulatory (R) subunit of PKA were first subjected to computational docking, and the top 100,000 solutions were subsequently filtered based on amide hydrogen/deuterium (H/2H) exchange interface protection data.
View Article and Find Full Text PDFAn algorithm for comparison of homologous protein structures and for study of conformational changes in proteins, has been developed. The method is based on identification of pieces of the two molecules that have similar shapes, as determined by the local conformation of the polypeptide chain. Pieces that superpose within a specified tolerance are assembled into domains based on similar transformations for superposition.
View Article and Find Full Text PDFWe present an evaluation of our results for the first Critical Assessment of PRedicted Interaction (CAPRI). The methods used include the molecular docking program DOT, shape analysis tool FADE, cluster analysis and filtering based on biological data. Good results were obtained for most of the seven CAPRI targets, and for two systems, submissions having the highest number of correctly predicted contacts were produced.
View Article and Find Full Text PDFCAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes.
View Article and Find Full Text PDFTo better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact.
View Article and Find Full Text PDF