One well-established characteristic of early visual processing is the contrast sensitivity function (CSF) which describes how sensitivity varies with the spatial frequency (SF) content of the visual input. The CSF prompted the development of a now standard model of spatial vision. It represents the visual input by activity in orientation- and SF selective channels which are nonlinearly recombined to predict a perceptual decision.
View Article and Find Full Text PDFHuman vision relies on mechanisms that respond to luminance edges in space and time. Most edge models use orientation-selective mechanisms on multiple spatial scales and operate on static inputs assuming that edge processing occurs within a single fixational instance. Recent studies, however, demonstrate functionally relevant temporal modulations of the sensory input due to fixational eye movements.
View Article and Find Full Text PDFClassically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we previously showed that no classic model of vision, including ffCNNs, can explain human global shape processing.
View Article and Find Full Text PDF