Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation.
View Article and Find Full Text PDFThe inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER-associated degradation.
View Article and Find Full Text PDFObjectives: Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA.
View Article and Find Full Text PDFTo produce in vitro models of human chondrodysplasias caused by dominant missense mutations in TRPV4, we used CRISPR/Cas9 gene editing to introduce two heterozygous patient mutations (p.F273L and p.P799L) into an established control human iPSC line.
View Article and Find Full Text PDFTo better understand the molecular processes involved in driving osteoarthritis disease progression we characterized expression profiles of microRNAs (miRNA) and mRNAs in synovial tissue from a post-traumatic OA mouse model. OA was induced in 10-12 week old male C57BL6 mice by bilateral surgical destabilization of the medial meniscus (DMM). RNA isolated from the anterior synovium of mice at 1 and 6 weeks post-surgery was subject to expression profiling using Agilent microarrays and qPCR.
View Article and Find Full Text PDFObjective: To identify candidate microRNAs (miRNAs) that potentially regulate the initiation and progression of osteoarthritis (OA).
Methods: OA was induced in 10-12-week-old male wild-type C57BL/6 mice and in mice resistant to aggrecanase cleavage (Acan p.374ALGS→374NVYS) by destabilization of the medial meniscus (DMM).
The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM.
View Article and Find Full Text PDFObjective: To characterize the circadian clock in murine cartilage tissue and identify tissue-specific clock target genes, and to investigate whether the circadian clock changes during aging or during cartilage degeneration using an experimental mouse model of osteoarthritis (OA).
Methods: Cartilage explants were obtained from aged and young adult mice after transduction with the circadian clock fusion protein reporter PER2::luc, and real-time bioluminescence recordings were used to characterize the properties of the clock. Time-series microarrays were performed on mouse cartilage tissue to identify genes expressed in a circadian manner.
Biomineralization of the extracellular matrix occurs inappropriately in numerous pathological conditions such as cancer and vascular disease, but during normal mammalian development calcification is restricted to the formation of the skeleton and dentition. The comprehensive study of gene expression in mineralized skeletal tissues has been compromized by the traditional decalcification/fixation methods that result in significant mRNA degradation. In this study we developed a novel RNAlater/EDTA decalcification method that protects the integrity of the mRNA in mature mouse tibial epiphyses.
View Article and Find Full Text PDFPolyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo.
View Article and Find Full Text PDFObjective: To identify changes in gene expression in mice with osteoarthritis (OA) in order to explore the mechanisms of the disease.
Methods: Gene expression profiling was performed in cartilage from mice with surgically induced OA. We used wild-type (WT) mice and Adamts5Δcat mice, in which ADAMTS-5 activity is lacking and aggrecan loss and cartilage erosion are inhibited, to distinguish gene expression changes that are independent of ADAMTS-5 activity and cartilage breakdown.
Familial digital arthropathy-brachydactyly (FDAB) is a dominantly inherited condition that is characterized by aggressive osteoarthropathy of the fingers and toes and consequent shortening of the middle and distal phalanges. Here we show in three unrelated families that FDAB is caused by mutations encoding p.Gly270Val, p.
View Article and Find Full Text PDFUsing transcriptome profiling to determine differential gene expression between the permanent mouse articular cartilage and the transient growth plate cartilage, we identified a highly expressed gene, Cilp2, which is expressed differentially by articular chondrocytes. CILP-2 is highly homologous to CILP-1 (cartilage intermediate layer protein 1), which is expressed in the intermediate zone of articular cartilage and has been linked to cartilage degenerative diseases. We demonstrated that Cilp2 has a restricted mRNA distribution at the surface of the mouse articular cartilage during development, becoming localized to the intermediate zone of articular cartilage and meniscal cartilage with maturity.
View Article and Find Full Text PDFSex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis.
View Article and Find Full Text PDFIntroduction: The objective was to evaluate the changes in S100A8 S100A9, and their complex (S100A8/S100A9) in cartilage during the onset of osteoarthritis (OA) as opposed to inflammatory arthritis.
Methods: S100A8 and S100A9 protein localization were determined in antigen-induced inflammatory arthritis in mice, mouse femoral head cartilage explants stimulated with interleukin-1 (IL-1), and in surgically-induced OA in mice. Microarray expression profiling of all S100 proteins in cartilage was evaluated at different times after initiation of degradation in femoral head explant cultures stimulated with IL-1 and surgically-induced OA.
Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome).
View Article and Find Full Text PDFWARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain.
View Article and Find Full Text PDFIn vertebrates, longitudinal bone growth is the consequence of a complex series of events that take place in a specialized structure, the growth plate cartilage. Within the growth plate chondrocytes undergo a sequential maturation program from resting cells to proliferative, pre-hypertrophic, and ultimately hypertrophic end-stage chondrocytes. This process of chondrocyte maturation is under the control of the temporally and spatially regulated expression of a myriad of signaling molecules, transmembrane receptors, transcription factors, and structural extracellular matrix (ECM) proteins.
View Article and Find Full Text PDF