Publications by authors named "Lynn R Chrin"

The ability of Tau to act as a potent inhibitor of kinesin's processive run length in vitro suggests that it may actively participate in the regulation of axonal transport in vivo. However, it remains unclear how kinesin-based transport could then proceed effectively in neurons, where Tau is expressed at high levels. One potential explanation is that Tau, a conformationally dynamic protein, has multiple modes of interaction with the microtubule, not all of which inhibit kinesin's processive run length.

View Article and Find Full Text PDF

Isoforms of the smooth muscle (SM) myosin motor domain differ in the presence or absence of a seven amino acid insert in a flexible surface loop spanning the nucleotide-binding pocket known as Loop 1. The presence of this insert leads to a two-fold increase in actin sliding velocity and ADP release rate between these isoforms, although the effect of Loop 1 on the kinetics of ADP release remains unclear. To further investigate the role of the Loop 1 insert in modulating ADP release in SM myosin we have inserted a single tryptophan residue into Loop 1 of both isoforms as a probe of local structural dynamics.

View Article and Find Full Text PDF

The motor protein myosin uses energy derived from ATP hydrolysis to produce force and motion. Important conserved components (P-loop, switch I, and switch II) help propagate small conformational changes at the active site into large scale conformational changes in distal regions of the protein. Structural and biochemical studies have indicated that switch I may be directly responsible for the reciprocal opening and closing of the actin and nucleotide-binding pockets during the ATPase cycle, thereby aiding in the coordination of these important substrate-binding sites.

View Article and Find Full Text PDF

Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site.

View Article and Find Full Text PDF

The intrinsic fluorescence of smooth muscle myosin signals conformational changes associated with different catalytic states of the ATPase cycle. To elucidate this relationship, we have examined the pre-steady-state kinetics of nucleotide binding, hydrolysis, and product release in motor domain-essential light chain mutants containing a single endogenous tryptophan, either residue 512 in the rigid relay loop or residue 29 adjacent to the SH3 domain. The intrinsic fluorescence of W512 is sensitive to both nucleotide binding and hydrolysis, and appears to report structural changes at the active site, presumably through a direct connection with switch II.

View Article and Find Full Text PDF

The intrinsic fluorescence of smooth muscle myosin is sensitive to both nucleotide binding and hydrolysis. We have examined this relationship by making MDE mutants containing a single tryptophan residue at each of the seven positions found in the wild-type molecule. Previously, we have demonstrated that a conserved tryptophan residue (W512) is a major contributor to nucleotide-dependent changes of intrinsic fluorescence in smooth muscle myosin.

View Article and Find Full Text PDF

The putative actin-binding interface of myosin is separated by a large cleft that extends into the base of the nucleotide binding pocket, suggesting that it may be important for mediating the nucleotide-dependent changes in the affinity for myosin on actin. We have genetically engineered a truncated version of smooth muscle myosin containing the motor domain and the essential light chain-binding region (MDE), with a single tryptophan residue at position 425 (F425W-MDE) in the actin-binding cleft. Steady-state fluorescence of F425W-MDE demonstrates that Trp-425 is in a more solvent-exposed conformation in the presence of MgATP than in the presence of MgADP or absence of nucleotide, consistent with closure of the actin-binding cleft in the strongly bound states of MgATPase cycle for myosin.

View Article and Find Full Text PDF