The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway.
View Article and Find Full Text PDFIntegration of external signals and B-lymphoid transcription factor activities organise B cell lineage commitment through alternating cycles of proliferation and differentiation, producing a diverse repertoire of mature B cells. We use single-cell transcriptomics/proteomics to identify differentially expressed gene networks across B cell development and correlate these networks with subtypes of B cell leukemia. Here we show unique transcriptional signatures that refine the pre-B cell expansion stages into pre-BCR-dependent and pre-BCR-independent proliferative phases.
View Article and Find Full Text PDFThe transcription factors PAX5, IKZF1, and EBF1 are frequently mutated in B cell acute lymphoblastic leukemia (B-ALL). We demonstrate that compound heterozygous loss of multiple genes critical for B and T cell development drives transformation, including Pax5xEbf1, Pax5xIkzf1, and Ebf1xIkzf1 mice for B-ALL, or Tcf7xIkzf1 mice for T-ALL. To identify genetic defects that cooperate with Pax5 and Ebf1 compound heterozygosity to initiate leukemia, we performed a Sleeping Beauty (SB) transposon screen that identified cooperating partners including gain-of-function mutations in Stat5b (~65%) and Jak1 (~68%), or loss-of-function mutations in Cblb (61%) and Myb (32%).
View Article and Find Full Text PDFB-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years.
View Article and Find Full Text PDFThe transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCβ, NF-κB1 and IKAROS, to initiate B-ALL.
View Article and Find Full Text PDFNaive CD8 T cells proliferate in response to TCR and CD28 signals, but require IL-12 or type I IFN to survive and develop optimal effector functions. Although murine CTL generated in vitro in response to IL-12 or IFN-α had comparable effector functions, IL-12-stimulated cells were significantly more effective in controlling tumor in an adoptive immunotherapy model. They maintained high numbers and function, whereas IFN-α-stimulated cells declined in number and became exhausted.
View Article and Find Full Text PDFThe transcription factor Signal Tranducer and Activator of Transcription 5 (STAT5) plays an important role in many biological processes. To study STAT5 biology, several different constructs have been designed that render STAT5 constitutively active. These constructs have now been used to generate animal models that allow for targeted expression of constitutively active STAT5 including a model where STAT5 is expressed in developing B and T cells.
View Article and Find Full Text PDFSTAT5 plays a crucial role in B and T lymphocyte development. However, whether STAT5 primarily plays a role as a permissive factor, involved in lymphocyte survival, or an instructive factor, involved in lymphocyte differentiation, has been unclear. In addition, while STAT5 has been suggested to act as a transcriptional repressor, the mechanism by which it represses transcription was undefined.
View Article and Find Full Text PDFAs STAT5 is critical for the differentiation, proliferation, and survival of progenitor B cells, this transcription factor may play a role in acute lymphoblastic leukemia (ALL). Here, we show increased expression of activated signal transducer and activator of transcription 5 (STAT5), which is correlated with poor prognosis, in ALL patient cells. Mutations in EBF1 and PAX5, genes critical for B cell development have also been identified in human ALL.
View Article and Find Full Text PDFThe transcription factor signal transducer and activator of transcription 5 (STAT5) is activated by a number of cytokine and growth hormone receptors and plays a key role in the development and function of many organ systems. In this review, we focus on recent discoveries about the role of STAT5 in the development and function of B and T lymphocytes. Of particular interest is the growing appreciation for the function of STAT5 as a transcriptional repressor.
View Article and Find Full Text PDFActivation-induced deaminase (AID) is expressed in activated B lymphocytes and initiates somatic hypermutation and class switch recombination. To determine if different stimuli affect the expression and function of AID, we monitored AID activity in murine B cells stimulated ex vivo with various ligands. AID was rapidly expressed at both the RNA and protein levels following stimulation with LPS, LPS plus IL-4, and anti-CD40 plus IL-4, but was delayed after stimulation with anti-IgM plus IL-4.
View Article and Find Full Text PDF