Females are more susceptible to pulmonary arterial hypertension than males, although the reasons remain unclear. The hypoglycemic drug, metformin, is reported to have multiple actions, including the inhibition of aromatase and stimulation of AMP-activated protein kinase. Inhibition of aromatase using anastrazole is protective in experimental pulmonary hypertension but whether metformin attenuates pulmonary hypertension through this mechanism remains unknown.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT(+)) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs).
View Article and Find Full Text PDFRationale: Females are predisposed to pulmonary arterial hypertension (PAH); evidence suggests that serotonin, mutations in the bone morphogenetic protein receptor (BMPR) II gene, and estrogens influence development of PAH. The 5-hydroxytryptamine 1B receptor (5-HT1BR) mediates human pulmonary artery smooth muscle cell (hPASMC) proliferation.
Objectives: We aimed to determine whether selected microRNAs (miRNAs) expressed in PASMCs are influenced by sex, BMPR-II mutations, and estrogens, and contribute to PASMC proliferation in PAH.
Aims: Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2(+/-) mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression.
View Article and Find Full Text PDFAm J Respir Crit Care Med
August 2014
Rationale: The incidence of pulmonary arterial hypertension is greater in women, suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males, exogenously administered estrogen can protect against pulmonary hypertension (PH). However, in models that display female susceptibility, estrogens may play a causative role.
View Article and Find Full Text PDFAims: Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH.
View Article and Find Full Text PDFBackground: Pulmonary arterial hypertension (PAH) is a hyperproliferative vascular disorder observed predominantly in women. Estrogen is a potent mitogen in human pulmonary artery smooth muscle cells and contributes to PAH in vivo; however, the mechanisms attributed to this causation remain obscure. Curiously, heightened expression of the estrogen-metabolizing enzyme cytochrome P450 1B1 (CYP1B1) is reported in idiopathic PAH and murine models of PAH.
View Article and Find Full Text PDFSerotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown.
View Article and Find Full Text PDFBackground: Idiopathic and familial forms of pulmonary arterial hypertension (PAH) occur more frequently in women than men. However, the reason for this remains unknown. Both the calcium binding protein S100A4/Mts1 (Mts1) and its endogenous receptor (receptor for advanced glycosylation end products; RAGE) have been implicated in the development of PAH.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is up to threefold more prevalent in women than men. Female mice overexpressing the serotonin transporter (SERT; SERT+ mice) exhibit PAH and exaggerated hypoxia-induced PAH, whereas male SERT+ mice remain unaffected. To further investigate these sex differences, microarray analysis was performed in the pulmonary arteries of normoxic and chronically hypoxic female and male SERT+ mice.
View Article and Find Full Text PDFAims: Idiopathic and familial forms of pulmonary arterial hypertension (PAH) predominantly affect females through an unknown mechanism. Activity of the serotonin transporter (SERT) may modulate the development of PAH, and mice overexpressing SERT (SERT+ mice) develop PAH and severe hypoxia-induced PAH. In the central nervous system, oestrogens influence activity of the serotonin system.
View Article and Find Full Text PDFAims: A mechanism for co-operation between the serotonin (5-hydroxytryptamine, 5-HT) transporter and 5-HT1B receptor in mediating pulmonary artery vasoconstriction and proliferation of pulmonary artery smooth muscle cells has been demonstrated in vitro. Here we determine, for the first time, the in vivo effects of a combined 5-HT1B receptor/serotonin transporter antagonist (LY393558) with respect to the development of pulmonary arterial hypertension (PAH) and its in vitro effects in human pulmonary artery smooth muscle cells (hPASMCs) derived from idiopathic PAH (IPAH) patients.
Methods And Results: We determined the effects of LY393558 as well as a selective serotonin transporter inhibitor, citalopram, on right ventricular pressure, right ventricular hypertrophy, and pulmonary vascular remodelling in wildtype mice and mice over-expressing serotonin transporter (SERT+ mice) before and after hypoxic exposure.
Background: The incidence of pulmonary arterial hypertension secondary to the use of indirect serotinergic agonists such as aminorex and dexfenfluramine led to the "serotonin hypothesis" of pulmonary arterial hypertension; however, the role of serotonin in dexfenfluramine-induced pulmonary arterial hypertension remains controversial. Here, we used novel transgenic mice lacking peripheral serotonin (deficient in tryptophan hydroxylase-1; Tph1(-/-) mice) or overexpressing the gene for the human serotonin transporter (SERT; SERT(+) mice) to investigate this further.
Methods And Results: Dexfenfluramine administration (5 mg x kg(-1) x d(-1) PO for 28 days) increased systolic right ventricular pressure and pulmonary vascular remodeling in wild-type mice but not in Tph1(-/-) mice, which suggests that dexfenfluramine-induced pulmonary arterial hypertension is dependent on serotonin synthesis.
Tryptophan hydroxylase 1 catalyzes the rate-limiting step in the synthesis of serotonin in the periphery. Recently, it has been shown that expression of the tryptophan hydroxylase 1 gene is increased in lungs and pulmonary endothelial cells from patients with idiopathic pulmonary arterial hypertension. Here we investigated the effect of genetic deletion of tryptophan hydroxylase 1 on hypoxia-induced pulmonary arterial hypertension in mice by measuring pulmonary hemodynamics and pulmonary vascular remodeling before and after 2 weeks of hypoxia.
View Article and Find Full Text PDFPulmonary arterial 5-hydroxytryptamine (serotonin) (5-HT) transporter (SERT)-, 5-HT receptor expression, and 5-HT-induced vasoconstriction can be increased in pulmonary hypertension. These variables were studied in normoxic and hypoxic Fawn-Hooded (FH) and Sprague-Dawley (SD) rats. Furthermore, we compared the functional effects of SERT inhibitors and 5-HT receptor antagonists against 5-HT-induced vasoconstriction of pulmonary arteries.
View Article and Find Full Text PDFBackground: Increased serotonin (5-hydroxytryptamine, 5-HT) transporter activity has been observed in human familial pulmonary hypertension.
Methods And Results: We investigated pulmonary hemodynamics and the development of hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling in mice overexpressing the gene for the 5-HT transporter (5-HTT+ mice). Right ventricular pressure was elevated 3-fold in normoxic 5-HTT+ mice compared with their wild-type controls.