Publications by authors named "Lynn K Kurihara"

The interfacial structure in a liquid crystal/nanoparticle nanocomposite is dictated by the type of nanoparticle and its functionalization compound. Nanocomposites consisting of smectic liquid crystals and nanoparticles have been studied for their applications in devices such as photovoltaics and to model biological devices. With the use of a model system, this paper presents evidence of an interfacial structure close to the vicinity of the nanoparticles that is more disordered than that of the bulk liquid crystal but is still in the smectic phase, and it seems to follow the faceting of the structure the nanoparticles adopt when they coalesce or recluster after the liquid crystal is added.

View Article and Find Full Text PDF

The pH-dependent binding affinity of either avidin or streptavidin for iminobiotin has been utilized in studies ranging from affinity binding chromatography to dynamic force spectroscopy. Regardless of which protein is used, the logarithmic dependence of the equilibrium dissociation constant (K(d)) on pH is assumed conserved. However a discrepancy has emerged from a number of studies which have shown the binding affinity of streptavidin for iminobiotin in solution to be unexpectedly low, with the K(d) at values usually associated with non-specific binding even at strongly basic pH levels.

View Article and Find Full Text PDF

The impact of magnetic nanoparticles with different surface coating upon the isotropic-to-nematic and nematic-to-smectic- A phase transitions of the liquid crystal octylcyanobiphenyl is explored by means of high-resolution adiabatic scanning calorimetry. A shrinkage of the nematic range is observed, which is strongly dependent on the surface coating of the nanoparticles. The isotropic-to-nematic transition remains weakly first order while the nematic-to-smectic- A is continuous with the effective critical exponent alpha values (0.

View Article and Find Full Text PDF

Today's biosensors and drug delivery devices are increasingly incorporating lithographically patterned circuitry that is placed within microns of the biological molecules to be detected or released. Elevated temperatures due to Joule heating from the underlying circuitry cannot only reduce device performance, but also alter the biological activity of such molecules (i.e.

View Article and Find Full Text PDF

A prototype system is described for the large scale, continuous production of nanophase metals, metal oxides, and other nanophase materials using the polyol process. The polyol process employs an organic solvent such as ethylene glycol to reduce a metal oxide/metal salt at high temperature to the metal oxide or metal. The system employs a 6 kW, 2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl2t7rp8v49c2tglfd4i5ktmd5h93b7lj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once