Grazing management and stocking strategy decisions involve the manipulation of grazing intensity, grazing frequency, and timing of grazing to meet specific objectives for pasture sustainability and economic livestock production. Although there are numerous stocking systems used by stakeholders, these methods may be broadly categorized as either continuous or some form of rotational stocking. In approximately 30 published experiments comparing continuous vs.
View Article and Find Full Text PDFImprovements in forage nutritive value can reduce methane emission intensity in grazing ruminants. This study was designed to evaluate how the legume rhizoma peanut (Arachis glabrata; RP) inclusion into bahiagrass (Paspalum notatum) hay diets would affect intake and CH4 production in beef steers. We also assessed the potential to estimate the proportion of RP contribution to CH4 emissions using δ13C from enteric CH4.
View Article and Find Full Text PDFThe objective of Trial 1 was to determine the effects of condensed tannins (CT) from sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G.
View Article and Find Full Text PDFThe objectives of this study were to determine the emission of nitrous oxide (NO), methane (CH), and carbon dioxide (CO), as well as the isotopic composition of NO from excreta of beef steers fed 'AU Grazer' sericea lespedeza hay [SL; Lespedeza cuneata (Dum. Cours.) G.
View Article and Find Full Text PDFRoots and rhizomes can play an important role in nutrient cycling, however, few studies have investigated how their decomposition pattern is affected by defoliation and time of the year. This 2-year study evaluated root-rhizome composition and decomposition of a warm-season rhizomatous perennial legume [rhizoma peanut (RP; Arachis glabrata Benth.)] under continuous stocking or when defoliated by clipping every 56 days.
View Article and Find Full Text PDFAn experiment was conducted to evaluate the effects of different proportions of 'Au Grazer' sericea lespedeza [SL, Lespedeza cuneata (Dum. Cours.) G.
View Article and Find Full Text PDFForage production is primarily limited by weather conditions under dryland production systems in Brazilian semi-arid regions, therefore sowing at the appropriate time is critical. The objectives of this study were to evaluate the CSM-CERES-Pearl Millet model from the DSSAT software suite for its ability to simulate growth, development, and forage accumulation of pearl millet [ (L.) R.
View Article and Find Full Text PDFResearch is limited for cow-calf operations as a potential nonpoint source of P within Florida's central highlands region (CHR). The study was conducted in a bahiagrass ( Flügge) pasture. The soil is an excessively drained 'Candler' sand.
View Article and Find Full Text PDFThere is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round.
View Article and Find Full Text PDFIn northern Florida, forages are grown in dairy effluent sprayfields to recover excess P. Our purpose was to evaluate five year-round forage systems for their capacity to remove P from a dairy sprayfield. The soil is a Kershaw sand (thermic, uncoated Typic Quartzipsamment).
View Article and Find Full Text PDFIn northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment).
View Article and Find Full Text PDFFlorida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment).
View Article and Find Full Text PDF