Exposure to bioaerosols has been implicated in adverse respiratory symptoms, infectious diseases, and bioterrorism. Although these particles have been measured within residential and occupational settings in multiple studies, the deposition of bioaerosol particles within the human respiratory system has been only minimally explored. This paper uses real-world environmental measurement data of total fungal spores using Air-o-Cell cassettes in 16 different apartments and residents' physiological data in those apartments to predict respiratory deposition of the spores.
View Article and Find Full Text PDFThe Portable Exposure Cassette (PIVEC) was developed for on-site air quality testing using lung cells. Here, we describe the incorporation of a sensor within the PIVEC for real time monitoring of cellular oxidative stress during exposure to contaminated air. An electrochemical, enzymatic biosensor based on cytochrome c (cyt c) was selected to measure reactive oxygen species (ROS), including hydrogen peroxide and super oxides, due to the stability of signal over time.
View Article and Find Full Text PDFThe proliferation of 3D printing MakerSpaces in university settings has led to an increased risk of student and technician exposure to ultrafine particles. New MakerSpaces do not have standardized specifications to aid in the design of the space; therefore, a need exists to characterize the impacts of different engineering controls on MakerSpace air quality. This study compares three university MakerSpaces: a library MakerSpace operating ≤4 devices under typical office space ventilation with no engineering controls, a laboratory MakerSpace operating 29 printers inside grated cabinets, with laboratory-grade ventilation, and a center MakerSpace operating ≤4 devices with neither engineering controls nor internal ventilation.
View Article and Find Full Text PDFThis protocol introduces a new in vitro exposure system, capable of being worn, including its characterization and performance. Air-liquid interface (ALI) in vitro exposure systems are often large and bulky, making transport to the field and operation at the source of emission or within the breathing zone difficult. Through miniaturization of these systems, the lab can be brought to the field, expediting processing time and providing a more appropriate exposure method that does not alter the aerosol prior to contacting the cells.
View Article and Find Full Text PDFLittle consistency exists in the methodology for toxicological testing of aerosolized nanoparticles used in in vitro, air-interfaced culture (AIC) exposure systems for engineered nanoparticles (ENPs) risk-assessment, preventing inter-laboratory comparisons to identify dose thresholds for adverse effects. These inconsistencies result from heterogeneity in particle types, exposure durations, exposure systems, and dose metrics reported. We screened 10,241 studies in the literature for toxicological assessment of ENPs, resulting in 110 publications included after meeting eligibility criteria.
View Article and Find Full Text PDF