We report on the cross-reactivity of the cell adhesive peptide CRRETAWAC between human and porcine endothelial cells (ECs). CRRETAWAC is a phage display derived peptide which has been shown to bind the α5 β1 receptor on human ECs, but does not bind platelets and thus could be incorporated into a coating for cardiovascular biomaterials that resists platelet adhesion and thrombosis, while allowing for endothelialization. To determine the cross-reactivity of the peptide, attachment and growth of human and porcine ECs on CRRETAWAC fluorosurfactant polymer (FSP) coated surfaces was explored.
View Article and Find Full Text PDFEndothelial cell (EC) adhesion, shear retention, morphology, and hemostatic gene expression on fibronectin (FN) and RGD fluorosurfactant polymer (FSP)-coated expanded polytetrafluoroethylene grafts were investigated using an in vitro perfusion system. ECs were sodded on both types of grafts and exposed to 8 dyn/cm(2) of shear stress. After 24 h, the EC retention on RGD-FSP-coated grafts was 59 ± 14%, which is statistically higher than the 36 ± 11% retention measured on FN grafts (p < 0.
View Article and Find Full Text PDFBackground: Brugada syndrome (BrS) is associated with mutations in the cardiac sodium channel (Na(v)1.5). We previously reported that the function of a trafficking-deficient BrS Na(v)1.
View Article and Find Full Text PDFBackground: Brugada syndrome is associated with a high risk of sudden cardiac death and is caused by mutations in the cardiac voltage-gated sodium channel gene. Previously, the R282H-SCN5A mutation in the sodium channel gene was identified in patients with Brugada syndrome. In a family carrying the R282H-SCN5A mutation, an asymptomatic individual had a common H558R-SCN5A polymorphism and the mutation on separate chromosomes.
View Article and Find Full Text PDF