Publications by authors named "Lynn Dobrunz"

Visual perception of X-radiation is a well-documented, but poorly understood phenomenon. Scotopic rod cells and rhodopsin have been implicated in visual responses to X-rays, however, some evidence suggests that X-rays excite the retina via a different mechanism than visible light. While rhodopsin's role in X-ray perception is unclear, the possibility that it could function as an X-ray receptor has led to speculation that it could act as a transgenically expressed X-ray receptor.

View Article and Find Full Text PDF

In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear.

View Article and Find Full Text PDF

Rapid sensory detection of X-ray stimulation has been documented across a wide variety of species, but few studies have explored the underlying molecular mechanisms. Here we report the discovery of an acute behavioral avoidance response in wild type to X-ray stimulation. The endogenous UV-photoreceptor protein LITE-1 was found to mediate the locomotory avoidance response.

View Article and Find Full Text PDF

Altered inhibition/excitation (I/E) balance contributes to various brain disorders. Dysfunctional GABAergic interneurons enhance or reduce inhibition, resulting in I/E imbalances. Differences in short-term plasticity between excitation and inhibition cause frequency-dependence of the I/E ratio, which can be altered by GABAergic dysfunction.

View Article and Find Full Text PDF

Anxiety disorders are the most common neuropsychiatric disorders diagnosed in adolescence and adulthood. Stress can lead to an increase in anxiety-related behaviors, although the consequences of stress in rodents are typically investigated only in adults. The levels of Neuropeptide Y (NPY), a mediator of stress resilience, are reduced in adult patients with Post-Traumatic Stress Disorder.

View Article and Find Full Text PDF

Vitiligo is an autoimmune disease characterized by depigmented patches of skin due to loss of the pigment-producing melanocytes. No cure exists for vitiligo. The available treatments are inefficient for many patients, suggesting that universal treatment approaches may be inappropriate.

View Article and Find Full Text PDF

Non-invasive light delivery into the brain is needed foroptogenetics to avoid physical damage. An innovative strategy could employ x-ray activation of radioluminescent particles (RLPs) to emit localized light. However, modulation of neuronal or synaptic function by x-ray induced radioluminescence from RLPs has not yet been demonstrated.

View Article and Find Full Text PDF

There is an ongoing need for noninvasive tools to manipulate brain activity with molecular, spatial and temporal specificity. Here we have investigated the use of MRI-visible, albumin-based nanoclusters for noninvasive, localized and temporally specific drug delivery to the rat brain. We demonstrated that IV injected nanoclusters could be deposited into target brain regions via focused ultrasound facilitated blood brain barrier opening.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is an endogenous neuropeptide that is abundantly expressed in the central nervous system. NPY is involved in various neurological processes and neuropsychiatric disorders, including fear learning and anxiety disorders. Reduced levels of NPY are reported in Post-Traumatic Stress Disorder (PTSD) patients, and NPY has been proposed as a potential therapeutic target for PTSD.

View Article and Find Full Text PDF

Optogenetics is widely used in neuroscience to control neural circuits. However, non-invasive methods for light delivery in brain are needed to avoid physical damage caused by current methods. One potential strategy could employ x-ray activation of radioluminescent particles (RPLs), enabling localized light generation within the brain.

View Article and Find Full Text PDF

The current effort demonstrates that lutetium oxyorthosilicate doped with 1-10% cerium (LuSiO:Ce, LSO:Ce) radioluminescent particles can be coated with a single dye or multiple dyes and generate an effective energy transfer between the core and dye(s) when excited via X-rays. LSO:Ce particles were surface modified with an alkyne modified naphthalimide (6-piperidin-1-yl-2-prop-2-yn-1-yl-1 H-benzo[ de]isoquinoline-1,3-(2 H)-dione, AlNap) and alkyne modified rhodamine B ( N-(6-diethylamino)-9-{2-[(prop-2-yn-1-yloxy)carbonyl]phenyl}-3 H-xanthen-3-ylidene)- N-ethylethanaminium, AlRhod) derivatives to tune the X-ray excited optical luminescence from blue to green to red using Förster Resonance Energy Transfer (FRET). As X-rays penetrate tissue much more effectively than UV/visible light, the fluorophore modified phosphors may have applications as bioimaging agents.

View Article and Find Full Text PDF

Short-term plasticity enables synaptic strength to be dynamically regulated by input timing. Excitatory synapses arising from the same axon can have profoundly different presynaptic forms of short-term plasticity onto inhibitory and excitatory neurons. We previously showed that Schaffer collateral synapses onto most hippocampal CA1 stratum radiatum interneurons have less paired-pulse facilitation than synapses onto CA1 pyramidal cells, but little difference in steady-state short-term depression.

View Article and Find Full Text PDF

GABAergic dysfunction has been implicated in a variety of neurological and psychiatric disorders, including anxiety disorders. Anxiety disorders are the most common type of psychiatric disorder during adolescence. There is a deficiency of GABAergic transmission in anxiety, and enhancement of GABA transmission through pharmacological means reduces anxiety behaviors.

View Article and Find Full Text PDF

Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests.

View Article and Find Full Text PDF

Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old.

View Article and Find Full Text PDF

Unlabelled: Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety.

View Article and Find Full Text PDF

Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue.

View Article and Find Full Text PDF

Unlabelled: Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders.

View Article and Find Full Text PDF

Many neurodevelopmental and neuropsychiatric disorders involve an imbalance between excitation and inhibition caused by synaptic alterations. The proper excitation/inhibition (E/I) balance is especially critical in CA1 pyramidal cells, because they control hippocampal output. Activation of Schaffer collateral axons causes direct excitation of CA1 pyramidal cells, quickly followed by disynaptic feedforward inhibition, stemming from synaptically induced firing of GABAergic interneurons.

View Article and Find Full Text PDF

Accumulating evidence strongly implicates the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in the pathophysiology of multiple neurological disorders, but the downstream gene targets of PGC-1α in the brain have remained enigmatic. Previous data demonstrate that PGC-1α is primarily concentrated in inhibitory neurons and that PGC-1α is required for the expression of the interneuron-specific Ca(2+)-binding protein parvalbumin (PV) throughout the cortex. To identify other possible transcriptional targets of PGC-1α in neural tissue, we conducted a microarray on neuroblastoma cells overexpressing PGC-1α, mined results for genes with physiological relevance to interneurons, and measured cortical gene and protein expression of these genes in mice with underexpression and overexpression of PGC-1α.

View Article and Find Full Text PDF

In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax (J)) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age.

View Article and Find Full Text PDF

The ubiquitin proteasome system is required for the rapid and precise control of protein abundance that is essential for synaptic function. USP14 is a proteasome-bound deubiquitinating enzyme that recycles ubiquitin and regulates synaptic short-term synaptic plasticity. We previously reported that loss of USP14 in ax(J) mice causes a deficit in paired pulse facilitation (PPF) at hippocampal synapses.

View Article and Find Full Text PDF

Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3.

View Article and Find Full Text PDF

CA1 pyramidal neurons receive two distinct excitatory inputs that are each capable of influencing hippocampal output and learning and memory. The Schaffer collateral (SC) input from CA3 axons onto the more proximal dendrites of CA1 is part of the trisynaptic circuit, which originates in Layer II of the entorhinal cortex (EC). The temporoammonic (TA) pathway to CA1 provides input directly from Layer III of the EC onto the most distal dendrites of CA1 pyramidal cells, and is involved in spatial memory and memory consolidation.

View Article and Find Full Text PDF

Intact cholinergic innervation from the medial septum and noradrenergic innervation from the locus ceruleus are required for hippocampal-dependent learning and memory. However, much remains unclear about the precise roles of acetylcholine (ACh) and norepinephrine (NE) in hippocampal function, particularly in terms of how interactions between these two transmitter systems might play an important role in synaptic plasticity. Previously, we reported that activation of either muscarinic M(1) or adrenergic alpha1 receptors induces activity- and NMDA receptor-dependent long-term depression (LTD) at CA3-CA1 synapses in acute hippocampal slices, referred to as muscarinic LTD (mLTD) and norepinephrine LTD (NE LTD), respectively.

View Article and Find Full Text PDF