Publications by authors named "Lynn D Keenliside"

Magnetoreception in the animal kingdom has focused primarily on behavioural responses to the static geomagnetic field and the slow changes in its magnitude and direction as animals navigate/migrate. There has been relatively little attention given to the possibility that weak extremely low-frequency magnetic fields (wELFMF) may affect animal behaviour. Previously, we showed that changes in nociception under an ambient magnetic field-shielded environment may be a good alternative biological endpoint to orientation measurements for investigations into magnetoreception.

View Article and Find Full Text PDF

Previous experiments with mice have shown that a repeated 1 h daily exposure to an ambient magnetic field shielded environment induces analgesia (anti-nociception). This shielding reduces ambient static and extremely low frequency magnetic fields (ELF-MF) by approximately 100 times for frequencies below 120 Hz. To determine the threshold of ELF-MF amplitude that would attenuate or abolish this effect, 30 and 120 Hz magnetic fields were introduced into the shielded environment at peak amplitudes of 25, 50, 100 and 500 nT.

View Article and Find Full Text PDF

Previous experiments with mice have shown that repeated 1 hour daily exposure to an ambient magnetic field-shielded environment induces analgesia (antinociception). The exposures were carried out in the dark (less than 2.0x1016 photonss-1m-2) during the mid-light phase of the diurnal cycle.

View Article and Find Full Text PDF

Orientation and nociception (pain sensitivity) are affected by exposure to geomagnetic or low frequency (<1,000 Hz) magnetic fields of approximately the earth's field strength, i.e., 50 microT.

View Article and Find Full Text PDF