Publications by authors named "Lynn Buckingham"

Severe malarial anemia (SMA) is the most frequent life-threatening complication of malaria and may contribute to the majority of malarial deaths worldwide. To explore the mechanisms of pathogenesis, we developed a novel murine model of SMA in which parasitemias peaked around 1.0% of circulating red blood cells (RBCs) and yet hemoglobin levels fell to 47% to 56% of baseline.

View Article and Find Full Text PDF

The natural killer complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic, and allelic variability of various NKC loci has been demonstrated in inbred mice. Making use of BALB.

View Article and Find Full Text PDF

The primary pathophysiological events contributing to fatal malaria are the cerebral syndrome, anemia, and lactic acidosis. The molecular basis of each event has been unclear. In the present study, microarray analysis of murine transcriptional responses during the development of severe disease revealed temporal, organ-specific, and pathway-specific patterns.

View Article and Find Full Text PDF

Inbred strains of mice infected with Leishmania major have been classified as genetically resistant or susceptible on the basis of their ability to cure their lesions, the parasite burden in the draining lymph nodes, and their type of T helper cell immune responses to the parasite. Using the intradermal infection at the base of the tail and the ear pinna, we compared for the first time the above-mentioned parameters in six strains of mice infected with metacyclic promastigotes, and we show that the severity of disease depends greatly on the site of infection. Although the well-documented pattern of disease susceptibility of BALB/c and C57BL/6 mice described for the footpad and base-of-the-tail models of leishmaniasis were confirmed, C3H/HeN and DBA/2 mice, which are intermediate and susceptible, respectively, in the tail and other models, were resistant to ear infection.

View Article and Find Full Text PDF

CD1d-restricted NKT cells are a novel T cell lineage with unusual features. They co-express some NK cell receptors and recognize glycolipid antigens through an invariant T cell receptor (TCR) in the context of CD1d molecules. Upon activation through the TCR, NKT cells produce large amounts of IFN-gamma and IL-4.

View Article and Find Full Text PDF

NKT cells are specialized cells coexpressing NK and T cell receptors. Upon activation they rapidly produce high levels of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) and are therefore postulated to influence T(H)1/T(H)2 immune responses. The precise role of the CD1/NKT cell pathway in immune response to infection remains unclear.

View Article and Find Full Text PDF

A major advance has been made towards the positional cloning of char2 (a quantitative trait locus encoding resistance to Plasmodium chabaudi malaria). Mice congenic for the locus have been used to fine map the gene and to prove that char2 plays a significant role in the outcome of malarial infection, independently of other resistance loci.

View Article and Find Full Text PDF