Divergence among duplicate genes is one of the important sources of evolutionary innovation. But, the contribution of duplicate divergence to variation in Arabidopsis accessions is sparsely known. Recently, we studied the role of a cell wall localized protein, ZERZAUST (ZET), in Landsberg (L) accession, lack of which results in aberrant plant morphology.
View Article and Find Full Text PDFOrchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in depends on the receptor-like kinase STRUBBELIG.
View Article and Find Full Text PDFTissue morphogenesis in plants requires communication between cells, a process involving the trafficking of molecules through plasmodesmata (PD). PD conductivity is regulated by endogenous and exogenous signals. However, the underlying signaling mechanisms remain enigmatic.
View Article and Find Full Text PDFBackground: During plant tissue morphogenesis cells have to coordinate their behavior to allow the generation of the size, shape and cellular patterns that distinguish an organ. Despite impressive progress the underlying signaling pathways remain largely unexplored. In Arabidopsis thaliana, the atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is involved in signal transduction in several developmental processes including the formation of carpels, petals, ovules and root hair patterning.
View Article and Find Full Text PDFTissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed.
View Article and Find Full Text PDFPlant organs, such as ovules and flowers, arise through cellular events that are precisely co-ordinated between cells within and across clonally distinct cell layers. Receptor-like kinases are cell-surface receptors that perceive and relay intercellular information. In Arabidopsis the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is required for integument initiation and outgrowth during ovule development, floral organ shape and the control of the cell division plane in the first subepidermal cell layer of floral meristems, among other functions.
View Article and Find Full Text PDFIntercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase.
View Article and Find Full Text PDFIn plants important questions relate to the mechanisms that control signaling between the histogenic cell layers of apical meristems and developing organs. The Arabidopsis putative atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) regulates amongst others floral organ shape, the plane of cell division in cells of the first subepidermal cell layer of floral meristems, ovule integument morphogenesis, and root hair patterning. Reporter assays using a functional translational fusion between SUB and EGFP indicate that SUB expression is largely confined to interior tissues in young flowers, ovules, and roots.
View Article and Find Full Text PDFAlthough cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem.
View Article and Find Full Text PDFAn open question remains as to what coordinates cell behavior during organogenesis, permitting organs to reach their appropriate size and shape. The Arabidopsis gene STRUBBELIG (SUB) defines a receptor-mediated signaling pathway in plants. SUB encodes a putative leucine-rich repeat transmembrane receptor-like kinase.
View Article and Find Full Text PDFGlycosyl hydrolases are important mediators of plant cell wall modification during plant development. These enzymes catalyse the hydrolytic release of specific sugars, such as L-arabinose, from the polysaccharide-rich cell wall matrix. The cloning and expression analysis of two genes, AtASD1 and AtASD2, encoding putative alpha-L-arabinofuranosidases in Arabidopsis thaliana are reported here.
View Article and Find Full Text PDF