Type 17 helper T-cell cytokines have been implicated in the pathogenesis of inflammatory bowel disease, a chronic condition affecting the gastrointestinal tract, but information regarding their contribution to pathology in different regions of the gut is lacking. By using a murine model of bacteria-induced typhlocolitis, we investigated the role of IL-17A, IL-17F, and IL-22 in cecal versus colonic inflammation. Cecal, but not colonic, pathology in C57BL/6 mice inoculated with Helicobacter hepaticus plus anti-IL-10 receptor (IL-10R) monoclonal antibody was exacerbated by co-administration of anti-IL-17A monoclonal antibody, suggesting a disease-protective role for IL-17A in the cecum.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)-specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)-dependent antibacterial immunity in the intestine. Although IKKβ(ΔIEC) mice efficiently controlled Citrobacter rodentium infection, IKKα(ΔIEC) mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
The series of events leading to tertiary lymphoid organ (TLO) formation in mucosal organs following tissue damage remain unclear. Using a virus-induced model of autoantibody formation in the salivary glands of adult mice, we demonstrate that IL-22 provides a mechanistic link between mucosal infection, B-cell recruitment, and humoral autoimmunity. IL-22 receptor engagement is necessary and sufficient to promote differential expression of chemokine (C-X-C motif) ligand 12 and chemokine (C-X-C motif) ligand 13 in epithelial and fibroblastic stromal cells that, in turn, is pivotal for B-cell recruitment and organization of the TLOs.
View Article and Find Full Text PDFBackground: In Type 1 diabetes, the insulin-producing β-cells within the pancreatic islets of Langerhans are destroyed. We showed previously that immunotherapy with Bacillus Calmette-Guerin (BCG) or complete Freund's adjuvant (CFA) of non-obese diabetic (NOD) mice can prevent disease process and pancreatic β-cell loss. This was associated with increased islet Regenerating (Reg) genes expression, and elevated IL-22-producing Th17 T-cells in the pancreas.
View Article and Find Full Text PDFInterleukin-22 (IL-22) is central to host protection against bacterial infections at barrier sites. Both innate lymphoid cells (ILCs) and T cells produce IL-22. However, the specific contributions of CD4(+) T cells and their developmental origins are unclear.
View Article and Find Full Text PDFThe recent discovery of a new CD4+ T cell subset, Th17, has transformed our understanding of the pathogenetic basis of an increasing number of chronic immune-mediated diseases. Particularly in tissues that interface with the microbial environment-such as the intestinal and respiratory tracts and the skin-where most of the Th17 cells in the body reside, dysregulated immunity to self (or the extended self, the diverse microbiota that normally colonize these tissues) can result in chronic inflammatory disease. In this review, we focus on recent advances in the biology of the Th17 pathway and on genome-wide association studies that implicate this immune pathway in human disease involving these tissues.
View Article and Find Full Text PDFLittle is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft versus host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pretransplant conditioning.
View Article and Find Full Text PDFPsoriasis is a common chronic autoimmune skin disease of unknown cause that involves dysregulated interplay between immune cells and keratinocytes. IL-22 is a cytokine produced by the TH1, TH17, and TH22 subsets that are functionally implicated in the psoriatic pathology. We assessed the role of IL-22 in a mouse model where psoriasiform skin inflammation is triggered by topical application of the TLR7/8 agonist imiquimod.
View Article and Find Full Text PDFAccumulating evidence indicates that IL-1 family members and Th17 cytokines have a pathogenic role in psoriasis. We investigated the regulatory interactions of the IL-1-like IL-36 cytokine family and the Th17 cytokines in the context of skin inflammation. We observed increased gene expression of all three IL-36 cytokines in a Th17-dominant psoriasis-like animal model.
View Article and Find Full Text PDFThe maintenance of barrier function at exposed surfaces of the mammalian body is essential for limiting exposure to environmental stimuli, preventing systemic dissemination of commensal and pathogenic microbes and retaining normal homeostasis of the entire body. Indeed, dysregulated barrier function is associated with many infectious and inflammatory diseases, including psoriasis, influenza, inflammatory bowel disease and human immunodeficiency virus, which collectively afflict millions of people worldwide. Studies have shown that interleukin 22 (IL-22) is expressed at barrier surfaces and that its expression is dysregulated in certain human diseases, which suggests a critical role in the maintenance of normal barrier homeostasis.
View Article and Find Full Text PDFExpression of interleukin (IL)-22, a member of the IL-10 cytokine family, has recently been reported in a number of human diseases, including mucosal-associated infections and inflammatory disorders of the intestine, skin, and joints. Both T cells and an emerging category of innate lymphoid cells are sources of IL-22, while the IL-22 receptor complex is reported to be restricted to cells of nonhematopoietic origin. The ligand-receptor distribution of IL-22-IL-22R permits immune cells to regulate responses of epithelial cells, endothelial cells, fibroblasts, and other tissue-resident stromal cells.
View Article and Find Full Text PDFIL-22 is made by a unique set of innate and adaptive immune cells, including the recently identified noncytolytic NK, lymphoid tissue-inducer, Th17, and Th22 cells. The direct effects of IL-22 are restricted to nonhematopoietic cells, its receptor expressed on the surface of only epithelial cells and some fibroblasts in various organs, including parenchymal tissue of the gut, lung, skin, and liver. Despite this cellular restriction on IL-22 activity, we demonstrate that IL-22 induces effects on systemic biochemical, cellular, and physiological parameters.
View Article and Find Full Text PDFIL-22 has both proinflammatory and tissue-protective properties depending on the context in which it is expressed. However, the factors that influence the functional outcomes of IL-22 expression remain poorly defined. We demonstrate that after administration of a high dose of bleomycin that induces acute tissue damage and airway inflammation and is lethal to wild-type (WT) mice, Th17 cell-derived IL-22 and IL-17A are expressed in the lung.
View Article and Find Full Text PDFIL-22 is a member of the IL-10 cytokine family and signals through a heterodimeric receptor composed of the common IL-10R2 subunit and the IL-22R subunit. IL-10 and IL-22 both activate the STAT3 signaling pathway; however, in contrast to IL-10, relatively little is known about IL-22 in the host response to infection. In this study, using IL-22(-/-) mice, neutralizing Abs to IL-22, or both, we show that IL-22 is dispensable for the development of immunity to the opportunistic pathogens Toxoplasma gondii and Mycobacterium avium when administered via the i.
View Article and Find Full Text PDFT-helper 17 (Th17) cells are a new lineage of CD4(+) T cells that are characterized by their production of interleukin-17A (IL-17A). Recent studies show that these cells can also express IL-17F, IL-22, and IL-21. IL-17A and IL-17F can form a heterodimeric cytokine, which mediates biological activities, at least in part, through shared receptors with IL-17A and IL-17F homodimers.
View Article and Find Full Text PDFInterleukin (IL) 22 is a type II cytokine that is produced by immune cells and acts on nonimmune cells to regulate local tissue inflammation. As a product of the recently identified T helper 17 lineage of CD4(+) effector lymphocytes, IL-22 plays a critical role in mucosal immunity as well as in dysregulated inflammation observed in autoimmune diseases. We used comprehensive mutagenesis combined with mammalian cell expression, ELISA cell-based, and structural methods to evaluate how IL-22 interacts with its cell surface receptor, IL-22R/IL-10R2, and with secreted IL-22 binding protein.
View Article and Find Full Text PDFPsoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4(+)CD45RB(hi)CD25(-) cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA.
View Article and Find Full Text PDFIL-17A and IL-17F are related homodimeric proteins of the IL-17 family produced by Th17 cells. In this study, we show that mouse Th17 cells also produce an IL-17F/A heterodimeric protein. Whereas naive CD4(+) T cells differentiating toward the Th17 cell lineage expressed IL-17F/A in higher amounts than IL-17A/A homodimer and in lower amounts than IL-17F/F homodimer, differentiated Th17 cells expressed IL-17F/A in higher amounts than either homodimer.
View Article and Find Full Text PDFTh17 cells are a distinct lineage of effector CD4(+) T cells characterized by their production of interleukin (IL)-17. We demonstrate that Th17 cells also expressed IL-22, an IL-10 family member, at substantially higher amounts than T helper (Th)1 or Th2 cells. Similar to IL-17A, IL-22 expression was initiated by transforming growth factor beta signaling in the context of IL-6 and other proinflammatory cytokines.
View Article and Find Full Text PDFInterleukin 22 (IL-22) is a cytokine induced during both innate and adaptive immune responses. It can effect an acute phase response, implicating a role for IL-22 in mechanisms of inflammation. IL-22 requires the presence of the IL-22 receptor (IL-22R) and IL-10 receptor 2 (IL-10R2) chains, two members of the class II cytokine receptor family (CRF2), to effect signal transduction within a cell.
View Article and Find Full Text PDFProgrammed death-1 (PD-1) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor expressed upon T cell activation. PD-1(-/-) animals develop autoimmune diseases, suggesting an inhibitory role for PD-1 in immune responses. Members of the B7 family, PD-L1 and PD-L2, are ligands for PD-1.
View Article and Find Full Text PDF