This study demonstrated the importance of identifying the optimal balance of hydrophilic and hydrophobic moieties in amphiphilic coatings to achieve fouling-release (FR) performance that surpasses that of traditional hydrophobic marine coatings. While there have been many reports on fouling-release properties of amphiphilic surfaces, the offered understanding is often limited. Hence, this work is focused on further understanding of the amphiphilic surfaces.
View Article and Find Full Text PDFCombining amphiphilic fouling-release (FR) coatings with the surface-active nature of amphiphilic additives can improve the antifouling/fouling-release (AF/FR) properties needed to offer broad-spectrum resistance to marine biofoulants. This work is focused on further tuning the amphiphilic character of a previously developed amphiphilic siloxane-polyurethane (SiPU) coating by varying the amount of PDMS and PEG in the base system. Furthermore, surface-modifying amphiphilic additives (SMAAs) were incorporated into these amphiphilic FR SiPU coatings in varying amounts.
View Article and Find Full Text PDFA series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations.
View Article and Find Full Text PDFPoly(glycolic acid) microneedle arrays were fabricated using a drawing lithography process; these arrays were modified with a drug release agent and an antifungal agent by piezoelectric inkjet printing. Coatings containing poly(methyl vinyl ether-co-maleic anhydride), a water-soluble drug release layer, and itraconazole (an antifungal agent), were applied to the microneedles by piezoelectric inkjet printing. Microscopic evaluation of the microneedles indicated that the modified microneedles contained the piezoelectric inkjet printing-deposited agents and that the surface coatings were released in porcine skin.
View Article and Find Full Text PDFHigh-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS.
View Article and Find Full Text PDFAs part of ongoing efforts aimed at the development of extensive structure−property relationships for moisture-curable polysiloxane coatings containing tethered quaternary ammonium salt (QAS) moieties for potential application as environmental friendly coatings to combat marine biofouling, a combinatorial/high-throughput (C/HT) study was conducted that was focused on four different compositional variables. The coatings that were investigated were derived from solution blends of a silanol-terminated polydimethylsiloxane (HO-PDMS-OH), QAS-functional alkoxysilane, and methyltriacetoxysilane. The compositional variables investigated were alkoxysilane functionality of the QAS-functional silane, chain length of the monovalent alkyl group attached to the QAS nitrogen atom, concentration of the QAS-functional alkoxysilane, and molecular weight of the HO-PDMS-OH.
View Article and Find Full Text PDFSiloxane-polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coating systems have used PDMS with multiple functional groups which react into the polyurethane bulk.
View Article and Find Full Text PDFLarge numbers of coatings can be generated very quickly using a combinatorial high-throughput approach. Rapid screening assays are typically required to adequately evaluate and down select coating candidates to identify promising compositions. An automated, spinning water jet apparatus was developed to rapidly characterize the adhesion strength of marine organisms to coating surfaces.
View Article and Find Full Text PDF