Publications by authors named "Lyndon F Charles"

The process of new bone formation following trauma requires the temporal recruitment of cells to the site, including mesenchymal stem cells, preosteoblasts, and osteoblasts, the latter of which deposit minerals. Hence, bone repair, a process that is assessed by the extent of mineralization within the defect, can take months before it is possible to determine if a treatment is successful. Here, a fluorescently tagged Osterix, an early key gene in the bone formation cascade, is used as a predictive measure of bone formation.

View Article and Find Full Text PDF

Hydrogels are an attractive class of biomaterials for minimally invasive local drug delivery given their injectability, tunability, high water content, and biocompatibility. Broad applicability though is challenged: relatively modest mechanical properties restrict use to soft tissues, while flow properties necessary for injectability limit implantation to dried, enclosed tissues to minimize material migration during gelation. To address these dual concerns, we designed an injectable nanocomposite hydrogel based on dextran aldehyde and a poly(amido amine) dendrimer doped with phyllosilicate nanoplatelet fillers.

View Article and Find Full Text PDF

There is an age-associated reduction in the bone healing activity of bone morphogenetic protein-2 (BMP-2) that is currently addressed by administering higher doses of BMP-2 in elderly patients. The unwanted medical complications from high dose BMP-2 motivated this investigation to determine whether the addition of a low dose of fibroblast growth factor 2 (FGF-2) could enhance the ability of a lower dose of BMP-2 to heal calvarial bone defects in old mice (18-20 months old). FGF-2 (5 ng) and BMP-2 (2 μg) were administered by a controlled release two-phase biomaterial scaffold placed into the bone defect.

View Article and Find Full Text PDF

The in vivo osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated in vivo by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone.

View Article and Find Full Text PDF

Self-reinforced composites (SRCs) are materials where both the matrix and fiber-reinforcing phase are made up of the same polymer. Improved bonding can be achieved with self-reinforced composites compared to traditional dual-polymer, fiber-reinforced composites owing to the identical chemistry of the components in SRCs. Bonding between the fiber and matrix phase is an important factor in applications where mechanical stability is required, such as in the field of bone repair.

View Article and Find Full Text PDF

These studies provide evidence for the ability of a commercially available, defined, hyaluronan-gelatin hydrogel, HyStem-C™, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem-C™ hydrogels and mouse embryonic fibroblasts and Matrigel™, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages.

View Article and Find Full Text PDF

We have designed monolayers with weak intermolecular interactions for use as placeholders in intelligent self- and directed-assembly. We have shown that these 1-adamantanethiolate monolayers are labile with respect to displacement by exposing them to dilute solutions of alkanethiols. These self-assembled monolayers (SAMs) of 1-adamantanethiol on Au{111} were probed using ambient scanning tunneling microscopy (STM), and their assembled order was determined.

View Article and Find Full Text PDF