Athletes in contact and collision sports can sustain frequent subconcussive head impacts. Although most impacts exhibit low kinematics around or below 10 g of head linear acceleration, there is growing concern regarding the cumulative effects of repetitive sports head impacts. Even mild impacts can lead to brain deformations as shown through neuroimaging and finite element modeling, and thus may result in mild and transient effects on the brain, prompting further investigations of the biomechanical dose-brain response relationship.
View Article and Find Full Text PDFInstrumented mouthguards (iMGs) are widely applied to measure head acceleration event (HAE) exposure in sports. Despite laboratory validation, on-field factors including potential sensor skull-decoupling and spurious recordings limit data accuracy. Video analysis can provide complementary information to verify sensor data but lacks quantitative kinematics reference information and suffers from subjectivity.
View Article and Find Full Text PDFSleep disturbances following a concussion/mild traumatic brain injury are associated with longer recovery times and more comorbidities. Sensor technologies can directly monitor sleep-related physiology and provide objective sleep metrics. This scoping review determines how sensor technologies are currently used to monitor sleep following a concussion.
View Article and Find Full Text PDFContemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or compression with assumed peak strain and strain rate. These major gaps between global and microscale modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to downstream axonal damage throughout the white matter.
View Article and Find Full Text PDFImpacts in mixed martial arts (MMA) have been studied mainly in regard to the long-term effects of concussions. However, repetitive sub-concussive head impacts at the hyperacute phase (minutes after impact), are not understood. The head experiences rapid acceleration similar to a concussion, but without clinical symptoms.
View Article and Find Full Text PDFThere is growing concern that repetitive soccer headers may have negative long-term consequences on brain health. However, inconsistent and low-quality heading exposure measurements limit past investigations of this effect. Here we conducted a comprehensive heading exposure analysis across all players on a university women's soccer team for over two calendar years (36 unique athletes), quantifying both game and practice exposure during all in-season and off-season periods, with over ten thousand video-confirmed headers.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2024
Resting state electroencephalography (rsEEG) is widely used to investigate intrinsic brain activity, with the potential for detecting neurophysiological abnormalities in clinical conditions from neurodegenerative disease to developmental disorders. When interpreting quantitative rsEEG changes, a key question is: how much deviation from a healthy normal brain state indicates a clinically significant change? Here, we build on the existing rsEEG variability literature by quantifying how this baseline rsEEG range can be attributed to common but underinvestigated sources of variability: experiment day, time of day, and pre-recording exercise level. We found that even within individuals, frequency band powers and entropy measures can vary by 7% (sample entropy and relative alpha power) to 28% (absolute delta power).
View Article and Find Full Text PDFInstrumented mouthguard (iMG) sensors have been developed to measure sports head acceleration events (HAE) in brain injury research. Laboratory validation studies show that effective coupling of iMGs with the human skull is crucial for accurate head kinematics measurements. However, iMG-skull coupling has not been investigated in on-field sports settings.
View Article and Find Full Text PDFFront Hum Neurosci
September 2023
Introduction: Sub-concussive head impacts in soccer are drawing increasing research attention regarding their acute and long-term effects as players may experience thousands of headers in a single season. During these impacts, the head experiences rapid acceleration similar to what occurs during a concussion, but without the clinical implications. The physical mechanism and response to repetitive impacts are not completely understood.
View Article and Find Full Text PDFWearable devices are increasingly used to measure real-world head impacts and study brain injury mechanisms. These devices must undergo validation testing to ensure they provide reliable and accurate information for head impact sensing, and controlled laboratory testing should be the first step of validation. Past validation studies have applied varying methodologies, and some devices have been deployed for on-field use without validation.
View Article and Find Full Text PDFHead impacts are highly prevalent in sports and there is a pressing need to investigate the potential link between head impact exposure and brain injury risk. Wearable impact sensors and manual video analysis have been utilized to collect impact exposure data. However, wearable sensors suffer from high deployment cost and limited accuracy, while manual video analysis is a long and resource-intensive task.
View Article and Find Full Text PDFSoccer is a unique sport where players purposefully and voluntarily use their unprotected heads to manipulate the direction of the ball. There are limited soccer head impact exposure data to further study brain injury risks. The objective of the current study was to combine validated mouthpiece sensors with comprehensive video analysis methods to characterize head impact exposure and biomechanics in university varsity women's soccer.
View Article and Find Full Text PDFAnn Biomed Eng
December 2021
Contact sports players frequently sustain head impacts, most of which are mild impacts exhibiting 10-30 g peak head center-of-gravity (CG) linear acceleration. Wearable head impact sensors are commonly used to measure exposure and typically detect impacts using a linear acceleration threshold. However, linear acceleration across the head can substantially vary during 6-degree-of-freedom motion, leading to triggering biases that depend on sensor location and impact condition.
View Article and Find Full Text PDFDespite numerous research efforts, the precise mechanisms of concussion have yet to be fully uncovered. Clinical studies on high-risk populations, such as contact sports athletes, have become more common and give insight on the link between impact severity and brain injury risk through the use of wearable sensors and neurological testing. However, as the number of institutions operating these studies grows, there is a growing need for a platform to share these data to facilitate our understanding of concussion mechanisms and aid in the development of suitable diagnostic tools.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
March 2021
Magnetic Resonance Elastography (MRE) is an elasticity imaging technique that allows a safe, fast, and non-invasive evaluation of the mechanical properties of biological tissues in vivo. Since mechanical properties reflect a tissue's composition and arrangement, MRE is a powerful tool for the investigation of the microstructural changes that take place in the brain during childhood and adolescence. The goal of this study was to evaluate the viscoelastic properties of the brain in a population of healthy children and adolescents in order to identify potential age and sex dependencies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Pushrim-activated power-assisted wheels (PAPAWs) are assistive technologies that provide on-demand torque assistance to wheelchair users. Although the available power can reduce the physical load of wheelchair propulsion, it may also cause maneuverability and controllability issues. Commercially-available PAPAW controllers are insensitive to environmental changes, leading to inefficient and/or unsafe wheelchair movements.
View Article and Find Full Text PDFThe contact nature of American football has made head acceleration exposure a concern. We aimed to quantify the head kinematics associated with direct helmet contact and inertial head loading events in collegiate-level American football. A cohort of collegiate-level players were equipped with instrumented mouthguards synchronised with time-stamped multiple camera-view video footage of matches and practice.
View Article and Find Full Text PDFObjectives: To analyze the mechanical properties in different regions of the brain in healthy adults in a wide age range: 26 to 76 years old.
Methods: We used a multifrequency magnetic resonance elastography (MRE) protocol to analyze the effect of age on frequency-dependent (storage and loss moduli, G' and G″, respectively) and frequency-independent parameters (μ, μ, and η, as determined by a standard linear solid model) of the cerebral parenchyma, cortical gray matter (GM), white matter (WM), and subcortical GM structures of 46 healthy male and female subjects. The multifrequency behavior of the brain and frequency-independent parameters were analyzed across different age groups.
Given the worldwide adverse impact of traumatic brain injury (TBI) on the human population, its diagnosis and prediction are of utmost importance. Historically, many studies have focused on associating head kinematics to brain injury risk. Recently, there has been a push toward using computationally expensive finite element (FE) models of the brain to create tissue deformation metrics of brain injury.
View Article and Find Full Text PDFWhile many research efforts have focused on head impact exposure in professional soccer, there have been few studies characterizing exposure at the youth level. The aim of this study is to evaluate a new instrumentation approach and collect some of the first head impact exposure data for youth female soccer players. Athletes were instrumented with custom-fit mouthpieces that measure head impacts.
View Article and Find Full Text PDFThe head is kinematically constrained to the torso through the spine and thus, the spine dictates the amount of output head angular motion expected from an input impact. Here, we investigate the spinal kinematic constraint by analyzing the head instantaneous center of rotation (HICOR) with respect to the torso in head/neck sagittal extension and coronal lateral flexion during mild loads applied to 10 subjects. We found the mean HICOR location was near the C5-C6 intervertebral joint in sagittal extension, and T2-T3 intervertebral joint in coronal lateral flexion.
View Article and Find Full Text PDF